Archiv der Kategorie: EPAP – Referenz-Designs

Komplett isolierte Strommessung für Solar- und Motor-Applikationen

In der Praxis sieht man häufig Systeme, die auf Hall-Effekt-Sensoren basieren. Wenn keine Gleichströme gemessen werden sollen, werden auch Rogowski-Spulen eingesetzt. Jedes dieser Systeme hat seine Vor- und Nachteile. So ist bei Hall-Effekt basierenden Systemen die Genauigkeit über die Temperatur recht gering (nicht rückgeführte Systeme) oder bei rückgekoppelten Systemen ist der Strombedarf auf der Sekundärseite recht hoch, da die Kompensationswicklung mit einem Strom bis zu 2 A (typische Werte sind 50 bis 300 mA) beaufschlagt wird. Diese Nachteile sind bei der hier vorgestellten Schaltung nicht gegeben. Eine Übersicht über die Vor- und Nachteile der verschiedenen Systeme zeigt Tabelle 1.

Bild 1: Prinzip der Schaltung zur Strommessung(Bild: Analog Devices) Bild 1: Prinzip der Schaltung zur Strommessung (Bild: Analog Devices)

Die Schaltung in Bild 1 benutzt als Sensor einen 1-mΩ-Strommesswiderstand, der einen Messbereich von ±25 A ermöglicht. Über den AD8639, einen Operationsverstärker mit sehr geringem Offset, wird eine Verstärkung von 10 eingestellt. Durch Änderung des Verstärkungsfaktors können auch andere Maximalströme gemessen werden. Der Operationsverstärker stellt zusammen mit dem differentiellen Eingang des Sigma-Delta-Modulators (AD7401A) einen klassischen 3-OP-Instrumentenverstärker dar. Der geringe Offset von 3 µ V und die Drift von 0,01 µV/°C sind ideal für Anwendungen in Solar-Wechselrichtern.

Bild 2: Regelschleife mit Sigma-Delta-Modulator Bild 2: Regelschleife mit Sigma-Delta-Modulator

Der zwischen Verstärker und Modulator angeordnete Tiefpass erster Ordnung hat eine Bandbreite von 1,56 MHz und dient dazu, das Breitband-Rauschen zu reduzieren. Der Modulator wird mit einem externen Takt von 5 bis 20 MHz betrieben und gibt einen kontinuierlichen Datenstrom aus. Der 1-Bit-Datenstrom wird im nachfolgenden DSP oder FPGA durch einen Sinc3 Filter in ein Datenwort konvertiert. Dieser Filter hat eine typische Dezimierungsrate von DR = 256, was eine sehr gute Genauigkeit ergibt (Bild 2).

Bild 3: Regelschleife mit doppeltem Sinc3 Filter Bild 3: Regelschleife mit doppeltem Sinc3 Filter

Dieses Schema kann ohne zusätzliche Hardware noch erweitert werden. Für schnelle Abschaltungen (z.B. bei Überstrom) kann parallel ein Sinc3-Filter mit einer deutlich geringeren Dezimierungsrate (z.B. DR = 8) betrieben werden, der eine geringere Auflösung, aber auch eine geringere Durchlaufzeit besitzt. Diese zweifach aufgebauten Sinc3-Filter sind in den CortexM4-Prozessoren von Analog Devices bereits als Hardware Element integriert (Bild 3).

Die Spannungsversorgung auf der isolierten Seite wird durch Linearregler realisiert. Auf der „heißen“ Seite, die am Leistungsschalter hängt, wird eine isolierte Spannung von 5 V durch den ADuM6000 erzeugt, ein DC/DC-Wandler im SOIC-Gehäuse. Da der Operationsverstärker eine bipolare Versorgung bekommt, werden die 5 V durch einen Inverter (ADM8829) zu –5 V gewandelt. Die beiden Spannungen (±5 V) werden anschließend über rauscharme Linearregler auf ±2,5 V geregelt.

Der Vorteil der Strommessung über isolierte Sigma-Delta-Modulatoren und Strommesswiderstände liegt in der geringen Erwärmung und einem sehr guten thermischen Verhalten (Drift) über einen Bereich von –40 bis 125°C. Die Schaltung ist durch die robuste 1-Bit-Datenübertragung sehr gut für raue Umgebungen geeignet und kann dadurch in größerer Entfernung vom DSP/FPGA platziert werden, als Verfahren mit analogem Ausgang. Durch die geeignete Wahl der Dezimierungsrate (und einem eventuell nachfolgenden Sinc1-Filter) ist eine gute 50/60Hz-Unterdrückung gegeben. Ein weiterer Vorteil dieses Verfahrens sind – je nach Ausführung der Schaltung – die Kosten- und Platzersparnis gegenüber Hall-Effekt basierten Systemen.

Universeller Gasdetektor auf Basis elektrochemischer Sensoren

Die Schaltung in Bild 1 zeigt einen universellen, mobilen Gasdetektor, der mit verschiedenen elektrochemischen Sensoren bestückt werden kann. Im vorliegenden Beispiel ist ein Sensor CO-AX von Alphasense im Einsatz, der die Konzentration von Kohlenmonoxid bestimmen kann.

Elektrochemische Sensoren kommen häufig zum Einsatz, um giftige Gase in Konzentrationen kleiner 1 ppm zu bestimmen. Die eingesetzten Sensoren sind meist gasspezifisch, d.h. für jede Art von Gas wird ein separater Sensor benötigt.

Die Schaltung basiert auf einem sogenannten Auto-Zero-Verstärker (ADA4528-2), der eine maximale Offset-Spannung von 2,5 µV bei gleichzeitig gutem Spannungsrauschen von 5,6 µV/√Hz besitzt. Statt eines festen Transimpedanz-Widerstands wird der AD5270-20, ein programmierbarer Rheostat (einstellbarer Widerstand), eingesetzt, mit dem die Schaltung mit verschiedenen Sensoren betrieben werden kann, ohne die Bestückung der Platine zu ändern.

Die benötigte Referenzspannung von 1,2 V wird durch den ADR3412, eine Referenz mit einer Genauigkeit von 0,1%, einer Drift von 8 ppm/°C und sehr geringer Verlustleistung erzeugt. Diese beiden Kernkomponenten gewährleisten eine Genauigkeit, die für den nachfolgenden 16 Bit A/D-Wandler (z.B. AD7790) benötigt wird.

Funktionsweise der Schaltung

Bei elektrochemischen Sensoren diffundiert Gas durch eine Membran in Sensor und reagiert mit der Messelektrode (WE). Die Referenzelektrode (RE) erzeugt die Rückkopplung für den Verstärker (U2-A), der dafür sorgt, dass die Messelektrode (WE) ein konstantes Potenzial sieht, was durch die Änderung der Spannung an der Gegenelektrode (CE) erreicht wird.

Die Stromrichtung in der Messelektrode hängt davon ab, ob im Sensor eine Reduktionsreaktion oder eine Oxidation stattfindet. Im Falle des Kohlenmonoxid-Sensors findet eine Oxidation statt, der Strom fließt in die Messelektrode. Das bedeutet, das die Gegenelektrode ein um ca. 300 bis 400 mV negativeres Potenzial annehmen muss als die Messelektrode.

Bild 2: Vereinfachte Beschaltung des Sensors Bild 2: Vereinfachte Beschaltung des Sensors

Der Stromfluss liegt bei etwa 100 nA pro ppm, was bedeutet, dass zur Wandlung des Stroms in eine Spannung ein Transimpedanzwandler mit sehr geringem Eingangsstrom benötigt wird. Der ADA4528-2 eignet sich für diese Anwendung, da er CMOS-Eingangsstrukturen mit einem Eingangsstrom von 220 pA besitzt.

Die Schaltung benötigt nur eine einzelne Versorgungsspannung von 3,3 V, alle Komponenten sind auf einen optimale Genauigkeit bei geringem Strombedarf ausgelegt. Um den Strombedarf zu reduzieren kann statt eines ADA4528-2 ein ADA4505-2 eingesetzt werden, was allerdings zu Lasten der Genauigkeit geht.

Der Verstärker U2-A arbeitet als Stromsenke und sorgt für eine Potenzialdifferenz von 0 V zwischen Messelektrode WE und Referenzelektrode RE. Der Strom, der aus der Messelektrode fließt, ist proportional zur Gaskonzentration.

Die Ausgangsspannung des Transimpedanzwandler lässt sich wie folgt beschreiben: U0 = 1,2 V + IWE * RF

RF ist der Rückkopplungswiderstand des Transimpedanzwandlers (hier durch den Rheostat U3-B dargestellt); IWE ist der Strom, der in die Messelektrode fließt.

Einer der schwierigen Punkte ist die Genauigkeit der Daten, da besonders der Bereich nahe des Gleichstroms (einige mHz) interessant ist. Deshalb dient der Tiefpass aus R8 und C9 (0,16 Hz) als Filter. Diese tiefe Frequenz ist sinnvoll, da der Sensor eine Ansprechzeit von etwa 30 s hat. Mit dieser Konfiguration kommt die Schaltung auf eine rauschfreie Auflösung von 15,9 Bit.

Wichtig beim Test der Schaltung: Kohlenmonoxid ist ein giftiges Gas und in Konzentrationen von mehr als 250 ppm gefährlich. Daher sollte nur in geschlossenen Gefäßen getestet werden.

System zum Messen der relativen Luftfeuchte

Die Schaltung in Bild 1 zeigt ein kontaktloses, kapazitives System zur Messung der relativen Feuchte (RH) für den Bereich von 0% bis 100% RH mit einer Genauigkeit von 2% über den gesamten Messbereich. Die Schaltung ist für den Einsatz in Klimaanlagen, Schaltschränken, Inkubatoren und anderen industriellen und medizinischen Anwendungen geeignet.

 

Grundlegendes Messprinzip der Schaltung

Der AD7745 ist ein Baustein, der Kapazitäten misst (CDC – Capacitance to Digital Converter, Kapazitäts-/Digital-Wandler) und diese digital ausgibt. Da die Kapazität eines Plattenkondensators mit Gleichung 1 beschrieben wird, eignet sich dieser Baustein in Kombination mit einem Sensor vom Typ P14-W gut für die Feuchtemessung.

Gleichung 1 (Bild: VBM-Archiv) Gleichung 1 (Bild: VBM-Archiv)

Beim Sensor sind die Fläche und der Abstand der Kondensatorplatten konstant, ebenso die elektrische Feldkonstante. Die Kapazitätsänderung erfolgt durch die Permittivitätszahl (Wasser hat bei 20°C etwa 80, trockene Luft etwa 1), die größer wird, je mehr Feuchte im Sensor vorhanden ist. Die Kapazität des Sensors liegt laut Datenblatt zwischen etwa 140 pF bei 0% relativer Feuchte und 170 pF bei 100% relativer Feuchte.

Da der Betrag der relativen (Luft-)Feuchte temperaturabhängig ist, kann der im AD7745 integrierte Temperatursensor zur Kalibration und Korrektur der Messwerte dienen.

Funktionsbeschreibung der Schaltung

Der AD7745 besteht im Wesentlichen aus einem 24 Bit Sigma-Delta-Modulator mit digitalem Filter und serieller Schnittstelle, einer mit 32 kHz getakteten Spannungsquelle, einer Referenzspannungsquelle, einem Multiplexer sowie zwei D/A-Wandlern mit einer Auflösung von 7 Bit zur Einstellung des aktiven Messbereichs. Der AD7745 misst nun die externe Kapazität mit einer getakteten Schaltung nach dem Prinzip des Ladungsausgleichs.

Da die Ladung proportional zum Produkt von Spannung und Kapazität ist, kann die externe Kapazität bestimmt werden, da die Erregerspannung(UExcs) sowie die interne Vergleichskapazität (CRef) und die Referenzspannung (URef) bekannt sind. Die externe Kapazität wird nun ständig geladen und entladen, dabei wird die Spannung an CSENS ständig gewandelt.

Der AD7745 hat zwei begrenzende Faktoren bei der Messung von Kapazitäten: Die Dynamik des Messbereichs ist auf ±4,096 pF limitiert und die Gleichtaktkapazität (Common Mode Kapazität, CCM) beträgt maximal 21 pF.

Bei dem benutzen Sensor liegt die Kapazität ohne Luftfeuchte bei 140 pF, die Dynamik beträgt knapp 30 pF.

Diese Anpassung wird durch die sogenannte Bereichserweiterung basierend auf dem AD8615 realisiert. Über den Spannungsteiler aus R1 und R2 wird die Ausgangsspannung um den Faktor F reduziert, oder mit anderen Worten, die externe Kapazität darf um den Faktor F größer sein.

Um den Faktor zu berechnen, müssen EXCA und EXCB invers zu einander eingestellt sein, dann gilt für den Faktor die Beziehung gemäß:

Gleichung 2 (Bild: VBM-Archiv) Gleichung 2 (Bild: VBM-Archiv)

Für den hier verwendeten Sensor sind die folgenden Daten gegeben: FCM = 140 pF; FDYN = 25 pF.

Der Faktor für Gleichtakt und Dynamik wird jeweils getrennt betrachtet, der höchste Wert geht in die Berechnung ein.

Dabei sind: FCM = 140 pF / 17 pF = 8,24; FDYN = 25 pF / 8,192 pF = 3,05. Damit wird der Faktor für die Gleichtaktkapazität als Berechnungsgrundlage benutzt. Als Basis wird R1 mit 100 kΩ/1% angenommen, R2 ergibt sich nach:

Gleichung 3 (Bild: VBM-Archiv) Gleichung 3 (Bild: VBM-Archiv)

Zum Schluss muss der Wert der Gleichtaktkapazität angepasst werden, das erfolgt über die zwei internen D/A-Wandler, auch CAPDAC genannt. Da CCM bei 17 pF liegen soll, gilt folgende Einstellung für das CAPDAC-Register des AD7745: CAPDACCode = CCM / CCMmax x Auflösung des D/A-Wandlers = 17 pF / 21 pF x 127 = 103 = 0 x 67.

Den ADP2370 als LED-Treiber nutzen

Die Leuchtstoffröhre in meiner batteriegespeisten Campinglampe war ausgefallen. Eine neue war nicht verfügbar. So beschloss ich, die defekte Leuchtstoffröhre durch mehrere weiße 1-W-LEDs zu ersetzen. Die beste Möglichkeit zum Treiben der LEDs ist es, einen allgemein verfügbaren integrierten Abwärtswandler zu verwenden.

Moderne LEDs mit hoher Leistung sind effizienter und erreichen eine längere Lebensdauer als Glühlampen oder kompakte Leuchtstoffröhren. Ferner entfällt bei LEDs das die Augen ermüdende Flackern. Dies macht LEDs gegenüber Leuchtstofflampen weit überlegen.

Dieser Analogtipp beschreibt, wie der Abwärtswandler ADP2370 mit einstellbarer Ausgangsspannung den LED-Strom aus zahlreichen Energiequellen regelt, um einen einfachen, robusten und hocheffizient dimmbaren LED-Treiber zu realisieren.

LED-Treiber mit geregeltem Strom

Geregelter LED-Treiber mit dem ADP2370 (Bild: ADI)
Quelle: Redaktion Elektronikpraxis
Geregelter LED-Treiber mit dem ADP2370

Abwärtswandler wie der ADP2370 setzen normalerweise eine Eingangsspannung auf eine niedrigere Ausgangsspannung herunter. Die LED-Treiber-Schaltung in Bild 1 nutzt den ADP2370 jedoch, um statt einer Ausgangsspannung den LED-Strom zu regeln.

Die Widerstände R7 und R8 dienen als Last und als Strommesswiderstände. R6 und R9 mitteln die Strommessspannungen am Eingang von Operationsverstärker U2 und gleichen die LED-Ströme aus. Der Verstärker U2 verstärkt die Spannung über dem Strommesswiderstand mit der durch R2 und R3 eingestellten Verstärkung. Außerdem treibt er den Eingang FB des ADP2370 und bewirkt somit eine Regelung des LED-Stromes. Eine Verstärkung von 5,32 stellt den Strom in jeder LED auf etwa 320 mA ein.

R4, R5, R6 und R9 stellen eine Dimmerfunktion bereit. Eine Verringerung des Wertes von R4 bewirkt, dass die Strommessspannung einen geringfügigen Offset über 0 V erhält. Dies reduziert den LED-Strom. Ein Fotosensor könnte R4 ersetzen, um die LEDs in Abhängigkeit von der Intensität der Umgebungsbeleuchtung zu dimmen.

Ein Übertemperaturschutz lässt sich implementieren, indem man R4 durch einen NTC-Thermistor ersetzt oder R4 einen NTC-Thermistor parallel schaltet. So wird der Treiberstrom reduziert, sobald die LEDs eine bestimmte Temperatur übersteigen. Thermistor und LEDs müssen für genaue Temperaturmessungen einen guten thermischen Kontakt aufweisen.

Ab jetzt trinken wir nur noch Bier…

Ganz davon abgesehen, dass Bier uns auf Dauer dehydrieren würde, muss man wissen, dass die Bierproduktion fünf Liter Wasser für jeden Liter gebrauten Bieres verbraucht. Und in dieser Schätzung ist das Wasser, das für den Anbau der für das Brauen benötigten Zutaten aufgewendet werden muss, noch nicht einmal enthalten. Das Fazit lautet deshalb schlicht: kein Wasser – kein Bier.

Bei näherer Betrachtung fällt auf: ganz gleich, was man produziert – Wasser wird immer benötigt. Nicht nur wir Menschen brauchen täglich Wasser um zu duschen, unser Essen zuzubereiten und unsere Wäsche zu waschen, sondern auch so gut wie jede Produktion. Wussten Sie beispielsweise, dass für die Herstellung Ihres Computers nahezu 7.000 Liter Wasser nötig waren oder dass das in der Halbleiterproduktion verwendete Wasser größtenteils von höchster Reinheit ist?

Fakt ist, dass wir als Lebewesen auf Wasser angewiesen sind. Das sollte allerdings kein Grund sein, in Traurigkeit zu verfallen und nicht mehr weiterzulesen. Obwohl ich mich selbst als Umweltschützer bezeichnen möchte, mag auch ich die Berichte zum Thema Umwelt nicht mehr hören, denn sie geben mir ein Gefühl der Hilflosigkeit und scheinen niemals ein Happy End zu haben. In dem Fall, um den es hier geht, verspreche ich aber, dass die Geschichte gut ausgehen kann. Unsere Wasserprobleme sind allerdings so massiv, dass es zu ihrer Lösung einer Menge neuer Herangehensweisen und innovativer Lösungen bedarf.

Einer der Bereiche, die es in Angriff zu nehmen gilt, ist die Wasserversorgungs-Infrastruktur. Ein Drittel der US-amerikanischen Versorgungsunternehmen berichtet von einer auf Lecks in den Wasserversorgungssystemen zurückzuführenden Verlustquote von mehr als 40 % des gesamten Frischwassers pro Jahr. Lecks in den großen Versorgungsleitungen sind hieran ebenso beteiligt wie Leckagen in den einzelnen Haushalten. Stellen Sie sich nur einmal vor, bei einem anderen Gebrauchsgut (z.B. Benzin) gäbe es einen Verlust von 40 %. Wir würden die hieraus resultierenden überhöhten Rechnungen sowie die Verschwendung und die Umweltverschmutzung keinesfalls hinnehmen. Nur ausgerechnet beim Wasser, das doch eigentlich unsere wertvollste Ressource ist, stecken wir den Kopf in den Sand und bleiben tatenlos.

Eine Möglichkeit, das von Leckagen geplagte Wasserversorgungssystem zu korrigieren, ist eine bessere Verbrauchsmessung. Die in Amerika üblichen mechanischen Wasserzähler aber sind nur unzureichend in der Lage, Durchflüsse von weniger als 30 Litern pro Stunde zu erfassen. Schlimmer noch ist, dass sich die Genauigkeit der mechanischen Zähler im Laufe der Zeit verschlechtert, weil die mechanischen Teile zunehmend verschleißen. Dabei gibt es heute eine bessere Technik um Wasser-Durchflussmengen zu messen, nämlich mit Ultraschall. Zähler auf Ultraschallbasis messen zehnmal genauer als mechanische Zähler. Die 45.000 Liter Wasser, die in einem durchschnittlichen US-amerikanischen Haushalt jährlich verlorengehen, entsprechen einer Menge von 5 Litern in der Stunde – zu wenig also, um von einem mechanischen Zähler erfasst zu werden, aber ganz klar innerhalb des Messbereichs von Ultraschallzählern. Die Messung auf Ultraschallbasis kommt zudem ohne bewegliche Teile aus, sodass hier kein Verschleiß auftritt.

Ultraschall klingt gut, aber hat diese Geschichte nicht auch einen Haken? Teurer müssten diese Zähler eigentlich nicht sein, da sich die Ultraschallmessung im Laufe der Zeit mehr als bezahlt macht. Wenn Versorgungsunternehmen die Ultraschallzähler in einer automatisierten Wasserzähler-Infrastruktur einsetzen, können sie Leckagen erkennen und die Mengen in Rechnung stellen, die ihnen heute noch entgehen. Sie könnten also ihre Einnahmen steigern und überdies ihre Verteilungs-Infrastruktur straffen. Bei geschätzten Kosten von 1,50 US-Dollar für 4500 Liter Wasser könnten die Versorger pro Kunde 15 US-Dollar mehr im Jahr einnehmen. Abhängig davon, was die Zähler in größeren Stückzahlen kosten, sollten sich diese Investitionen für die Versorgungsunternehmen relativ rasch rechnen. Dies ist günstig für die Wasserversorger, und wir alle hätten eine Zähler-Infrastruktur, die jahrzehntelang präzise und zuverlässig arbeiten würde.

Bild 1: Blockdiagramm des MAXREFDES70# Bild 1: Blockdiagramm des MAXREFDES70#

Ich halte dies für eine sinnvolle Sache. Wenn Sie auch dieser Meinung sind, dann sehen Sie sich doch zum Beispiel einmal den Ultraschall-Wasserzähler MAXREFDES70# von Maxim an. Dieses Referenzdesign wurde entwickelt, um Zählerhersteller darin zu unterstützen, schnell und unkompliziert eine Schaltung zu entwickeln und um die Kosten für verschiedene Zählertypen zu senken.

16-Bit-DAC mit Referenz und Puffer und einer Linearität von ±1 LSB

Die Nutzung eines externen Puffers in einer Digital-zu-Analog-Wandlung kann verschiedene Gründe haben. Mit dem Puffer kann man z.B. höhere Ströme oder größere Kapazitäten treiben. Die Schaltung in Bild 1 zeigt einen 16 Bit D/A-Wandler mit ±1 LSB (Least Significant Bit – niederwertigstes Bit), der mit nur einer Versorgungsspannung auskommt, gefolgt von einem Verstärker ohne die sogenannte „crossover distortion“. Diese Nichtlinearität ist häufig bei konventionellen Rail-to-Rail-Verstärkern zu finden und verschlechtert die Linearität um bis zu 5 LSB.

Die Schaltung in Bild 1 eignet sich durch den niedrigen Energiebedarf von etwa 25 mW bei einer Versorgung von 6 V sehr gut für Anwendungen in der Automatisierungstechnik oder für Batterie betriebene Geräte. In der beschriebenen Schaltung wird ein nicht gepufferter D/A-Wandler (AD5541A) direkt aus einer vorgeschalteten Referenzspannungsquelle (ADR4550) versorgt. Diese 5 V dienen gleichzeitig als Referenzspannung für den D/A-Wandler und als Versorgungsspannung für den Puffer (ADA4500-2).Optional kann der D/A-Wandler mit einer zusätzlichen, geringeren Spannung für die serielle Schnittstelle versorgt werden.

Die Referenz darf mit einer Spannung im Bereich von 5,1 bis 15 V betrieben werden und liefert einen Ausgangsstrom bis zu 10 mA, was bei einem Gesamtstrom von etwa 4 mA mehr als ausreichend ist. Da Referenz und Versorgung des D/A-Wandlers aus derselben Spannung gespeist werden, ist als Puffer ein Rail-to-Rail-Verstärker Pflicht. Für die gegebene Konfiguration mit der 5-V-Referenz ergibt sich eine Spannung von 76,3 µV pro LSB, was 0,0015% des vollen Spannungsbereiches oder 15 ppm entspricht.

Deshalb sollte die Referenz so nahe wie möglich an dem REF-Pin des D/A-Wandlers platziert werden, da 2,5 mm Leiterbahn mit 1 mm Bahnbreite einen Widerstand bei Raumtemperatur von ca. 100 mΩ besitzt. Damit fallen bei 4 mA schon 400 µV ab. Ebenso hat der Verstärker einen Offset von etwa 120 µV. Um diese Anfangsfehler zu beseitigen, sollte die Schaltung kalibriert werden.

Bild 2: INL bei Verwendung eines Standard Rail-to-Rail Verstärkers
Quelle: Analog Devices
Bild 2: INL bei Verwendung eines Standard Rail-to-Rail Verstärkers

Was macht den ADA4500-2 nun zum idealen Treiber für einen D/A-Wandler? Die meisten Rail-to-Rail-Verstärker haben zwei differenzielle N- und P-Transistorpaare, die in der Regel bei etwa 1 V unter der Versorgungsspannung umschalten, was zu einem geringen Spannungssprung führt. Dieser Sprung verursacht bei der Verwendung als DAC-Puffer eine Verschlechterung der Linearität. Dieser Effekt tritt im konkreten Beispiel bei etwa 1,7 V unter der Versorgungsspannung auf und wird in Bild 2 dargestellt.

Der ADA4500-2 kommt mit einem einzigen Transistorpaar am Eingang aus, da er intern eine Ladungspumpe nutzt, um die Versorgungsspannung der Transistoren anzuheben. Damit entfällt das Umschalten zwischen den beiden Paaren und somit auch die dadurch resultierende Änderung im Offset des Verstärkers. Das Ergebnis über die komplette Signalkette ist in Bild 3 dargestellt. Die maximale Nichtlinearität liegt hier unter ±0,4 LSB.

Variationen der Schaltung

Bild 3: 3 INL mit dem ADA4500-2 (Analog Devices) Bild 3: 3 INL mit dem ADA4500-2

Die gezeigte Schaltung ist für Aktualisierungsraten von 1 µs ausgelegt. Eine stromsparendere Version ist mit der Familie ADA4505 möglich, wobei die Bandbreite auf weniger als 50 kHz reduziert wird. Der Strombedarf reduziert sich etwa um den Faktor 100. Für eine bipolare Ausgangsspannung eignet sich der D/A-Wandler AD5542A.

Eine andere Variante ist die Benutzung einer 2,5-V-Referenz, was den Nachteil eines reduzierten Ausgangsspannungsbereiches bedeutet. In diesem Fall wird der Bereich der Ausgangsspannung in den nicht kritischen Bereich des Operationsverstärkers gelegt. Ebenso kann der Operationsverstärker mit einer höheren Spannung (z.B. ±12 V) betrieben werden, um dem Operationsverstärker einen genügend großen Arbeitsbereich zur Verfügung zu stellen.

Abschließend noch ein Wort zum Layout. Um aus der Schaltung die maximal mögliche Genauigkeit zu erhalten, muss ein analoges und ein digitales Massepotenzial verwendet werden, die am D/A-Wandler zusammengeführt werden.

Alle Bypass-Kondensatoren sollten dicht an den entsprechenden Versorgungsanschlüssen der Bauteile positioniert werden. Die Serienwiderstände und -induktivitäten der Keramikkondensatoren sollten gering sein, um die Transienten durch geringe Impedanz zur Masse zu minimieren.

18-Bit-Datenerfassungssystem mit geringer Leistungsaufnahme

Bei der Schaltung in Bild 1 handelt es sich um ein komplettes, rauscharmes Datenerfassungssystem (5 MSample/s; 18 Bit), das 122 mW aufnimmt und eine hohe Genauigkeit bietet. Referenz, Referenzpuffer, Treiberverstärker und A/D-Wandler bilden eine optimierte Lösung mit einem Störabstand von 99 dB und einer harmonischen Verzerrung (THD) von −117 dB. Wegen ihrer geringen Leistungsaufnahme und ihrer kleinen Grundfläche eignet sich die Schaltung für portable Anwendungen.

Bild 1: Signalkette mit 5 MSample/s, 18 Bit (nicht alle Verbindungen sind dargestellt). (Bild: Analog Devices) Bild 1: Signalkette mit 5 MSample/s, 18 Bit (nicht alle Verbindungen sind dargestellt).

Der Verstärker ADA4897-1 mit Rail-to-Rail-Ausgang eignet sich als Treiber für den hochgenauen, SAR-A/D-Wandler AD7960 (5 MSample/s; 18 Bit). Das rauscharme Bauteil (1 nV/√Hz typ.) mit einer Stromaufnahme von 3 mA bietet eine Bandbreite von 230 MHz und eine Spannungsanstiegsgeschwindigkeit von 120 V/μs. Er schwingt in 45 ns auf 0,1% ein.

Die Eingangssignale für die Operationsverstärker des ADA4897-1 werden mit einem RC-Glied (820 Ω / 100 pF) gefiltert. Dieses bietet eine Bandbreite von 2 MHz. Für eine zusätzliche Filterung am Eingang des A/D-Wandlers AD7960 sorgt der RC-Filter mit 33 Ω / 56 pF. Dieser hat eine Bandbreite von 86 MHz. Dieses Filter reduziert die Rückwirkungen vom kapazitiven DAC-Eingang des AD7960 und begrenzt das Rauschen an den Eingängen des AD7960.

Die Schaltung nutzt Versorgungsspannungen von +7 V und −2,5 V für die Eingangstreiber des ADA4897-1, um den Energieverbrauch zu minimieren und eine optimale, niedrige Systemverzerrung zu erreichen. Die Ausgangsstufe des ADA4897-1 zeigt Rail-to-Rail-Verhalten und schwingt um 150 mV über/unter der jeweiligen Versorgungsspannung. Aus der zusätzlichen Reserve, die sich mit den Versorgungsspannungen von +7 V und −2,5 V ergibt, resultiert ein gutes Verzerrungsverhalten.

Der differenzielle Eingangsbereich des AD7960 wird mit einer externen Referenzspannung von 5 oder 4,096 V eingestellt. In Bild 1 wird die 5-V-Referenzspannung vom ADR4550 bereitgestellt. Beim ADR4550 handelt es sich um eine hochgenaue, rauscharme Referenz mit geringer Stromaufnahme (950 μA max.) und einem Anfangsfehler von maximal ±0,02%. Die Referenz bietet ferner eine gute Temperaturstabilität sowie ein niedriges Ausgangsrauschen.

Der AD8031 wird zur Pufferung der externen Referenz und der Gleichtaktausgangsspannung des AD7960 verwendet. Der AD8031 ist für viele Anwendungen geeignet. Angefangen bei batteriegespeisten Systemen mit großer Bandbreite bis hin zu sehr schnellen Systemen, bei denen aufgrund der Komponentendichte ein geringer Energieverbrauch erforderlich ist. Der AD8031 arbeitet stabil bei großen kapazitiven Lasten und kann die Entkopplungskondensatoren treiben, die erforderlich sind, um Spannungsspitzen als Folge von Stromtransienten zu minimieren.

Digitalschnittstelle und A/D-Wandler

Die Digitalschnittstelle des AD7960 nutzt den LVDS-Standard (Low Voltage Differential Signaling) für hohe Datenübertragungsraten. Ein LVDS-Signal CLK+/CLK− muss an den AD7960 angelegt werden, um Daten zum digitalen Host zu übertragen.

Der 5 MSample/s schnelle 18-Bit-Wandler AD7960 bietet ±0,8 LSB INL, ±0,5 LSB DNL sowie einen Dynamikbereich von 100 dB und nimmt 46,5 mW auf. Versorgt wird der AD7960 mit +5 V (UDD1) und +1,8 V (UDD2 und UIO), Bild 1. Die erforderlichen Versorgungsspannungen von 5 und 1,8 V können mit LDOs wie zum Beispiel den Modellen ADP7104 und ADP124 erzeugt werden.

Bild 2: Typische integrale Nichtlinearität (INL) des AD7960 in Abhängigkeit vom Ausgangscode mit REF = 5 V. Bild 2: Typische integrale Nichtlinearität (INL) des AD7960 in Abhängigkeit vom Ausgangscode mit REF = 5 V.

Der AD7960 wandelt die differenzielle Spannung der gegenphasigen Analogeingänge (IN+ und IN−) in ein digitales Ausgangssignal. Die Analogeingänge IN+ und IN− benötigen eine Gleichtaktspannung in Höhe der halben Referenzspannung. Der rauscharme Verstärker AD8031 puffert die +5-V-Referenzspannung der rausch- und driftarmen Referenz ADR4550 sowie die Gleichtaktausgangsspannung (UCM) der Digitalschnittstelle AD7960.

Der ADA4897-1 ist als Spannungsfolger konfiguriert und treibt die Eingänge des AD7960 mit einem differenziellen gegenphasigen 0- bis 5-V-Signal (180° Phasenversatz). Bild 2 zeigt die typische integrale Nichtlinearität (INL) als Funktion des Ausgangscodes des AD7960. Sie liegt mit einer externen Referenz von 5 V innerhalb der Spezifikationen von ±0,8 LSB.

Histogramm und FFT-Leistungsfähigkeit

Bild 3: Typisches Histogramm bei REF = 5 V Bild 3: Typisches Histogramm bei REF = 5 V

Die Genauigkeit der Schaltung ist aus dem Histogramm in Bild 3 und der FFT-Kurve in Bild 4 mit einer externen Referenz von 5 V ersichtlich. Die Daten wurden mit Hilfe des Evaluation-Boards EVAL-AD7960FMCZ und dem Audio Precision SYS-2702 als Signalquelle aufgenommen.

Blockschaltbild und Leiterplattenlayout findet man im Design Support Package CN-0277 unter www.analog.com/CN0277-DesignSupport.

 

 

 

Bild 4: 1 kHz, -0,5 dBFS Eingangssignla-FFT, REF = 5 V Bild 4: 1 kHz, -0,5 dBFS Eingangssignla-FFT, REF = 5 V

 

Häufige Varianten

Der AD7961 ist ein 5 MSample/s schneller differenzieller 16-Bit-A/D-Wandler aus der PulSAR-Familie. Er ist anschlusskompatibel zum AD7960. Somit kann er in der Schaltung in Bild 1 statt des AD7960 verwendet werden wenn lediglich eine Auflösung von 16 Bit erforderlich ist. Die Serie AD7960 unterstützt externe Referenzen mit 4,096 oder 5 V. Das EVAL-AD7960FMCZ ermöglicht über einen Jumper die Auswahl des ADR4540 (4,096 V) oder des ADR4550 (5 V) als Referenz.

Die verschiedenen Möglichkeiten zum Anschluss der Referenzspannung werden über die Enable EN[0:3] Pins des AD7960 vorgenommen (siehe Datenblatt des AD7960). Falls ein Eingangsbereich von 0 bis 5 V erforderlich ist, kann die Referenz ADR4550 in Verbindung mit dem Referenzpuffer AD8031 verwendet werden. Dies erfolgt, indem man die Enable Pins des AD7960 als EN[0:3] = ‚X001’ oder ‚X101’ einstellt.

Die einkanaligen Operationsverstärker ADA4897-1 und AD8031 können durch die zweikanaligen Versionen (ADA4897-2 und AD8032) ersetzt werden.

Für optimiertes Rausch- und Verzerrungsverhalten kann statt des ADA4897-1 der ADA4899-1 (15 mA) verwendet werden. Der ADA4899-1 ist eine als Spannungsfolger konfigurierter stabiler, schneller Operationsverstärker, welcher eine sehr geringe Verzerrung und ein niedriges Spannungsrauschen von 1 nV/√Hz aufweist.

Schaltungsevaluierung und Test

Das Evaluation Board EVAL-AD7960FMCZ wurde entwickelt, um den A/D-Wandler AD7960 zu evaluieren und zu testen. Zum Testen der Schaltung in Bild 1 wurden zwei Operationsverstärker des Typs ADA4897-1 zum Treiben des AD7960 verwendet.

Ein Blockschaltbild und Benutzerhinweise befinden sich im Benutzerhandbuch UG-490 für das Board EVAL-AD7960FMCZ. Die Dokumentation beschreibt, wie die beschriebenen AC/DC-Tests durchzuführen sind.

Bild 5: Blockschaltbild des Testaufbaus Bild 5: Blockschaltbild des Testaufbaus

Der Anwender hat die Option eine externe Versorgungsspannungen von +7 und −2,5 V für die Eingangsverstärker auf dem Board EVAL-AD7960FMCZ zu verwenden.

Bild 5 zeigt die Blockschaltung des Testaufbaus, Bild 6 ein Foto des Evaluation Boards.

Erforderliche Ausrüstung

Zum Testen der Schaltung ist folgende Ausrüstung erforderlich:

• Das Evaluation Board EVAL-AD7960FMCZ und Software

• Das System-Demonstration-Plattform Board (EVAL-SDP-CH1Z)

• Ein verzerrungsarmer Signalgenerator wie zum Beispiel das Modell 81150A von Agilent oder SYS2702 von Audio Precision

• Ein PC mit USB-2.0-Schnittstelel, mit Windows XP, Windows Vista oder Windows 7 (32 oder 64 Bit)

• Ein 12 V DC-Netzteil (im Lieferumfang des EVAL-SDP-CH1Z Boards enthalten)

• USB-Schnittstellenkabel (1) und SMA-Kabel (1)

Bild 6: Das Board EVAL-AD7960FMCZ, angeschlossen an das Board EVAL-SDP-CH1Z Bild 6: Das Board EVAL-AD7960FMCZ, angeschlossen an das Board EVAL-SDP-CH1Z

Signalintegrität und Wellenwiderstand von Bauelementen

Beim Versuch, Signale bei der Übertragung auf einer Leiterplatte zu stabilisieren, können Signalintegritäts-Probleme eine Reihe interessanter Effekte hervorrufen. Eine einfache Lösung für diese Probleme bringen die IBIS-Modelle, aus denen sich wichtige Variablen für Signalintegritäts-Berechnungen und das Leiterplattendesign extrahieren lassen.

Die Werte, die man aus einem IBIS-Modell entnehmen kann, sind ein integraler Bestandteil der Berechnungen, die beim Design zum Thema Signalintegrität durchgeführt werden. Beim Anpassen von Leitungen in einem System müssen die elektrischen Impedanzen und Eigenschaften der integrierten Schaltungen und Leiterbahnen bekannt sein.

Bild 1: Schema einer massebezogenen Übertragungsleitung mit Sender, Leitung und Empfänger (Bild: TI)

Bild 1 zeigt eine Prinzipdarstellung einer massebezogenen Leitung. Für die Leitung können die Ausgangs-Impedanz des Senders (ZT, Ω) und die Eingangsimpedanz des Empfängers (ZR, Ω) aus dem IBIS-Modell des Schaltkreises entnommen werden. Die Datenblätter der IC-Hersteller enthalten diese Angaben unter Umständen nicht, doch lassen sich die Werte allesamt aus dem IBIS-Modell des betreffenden Bausteins extrahieren.

Wellenwiderstand, Signallaufzeit und Leiterbahnlänge

Übertragungsleitungen werden durch vier Parameter definiert: den Wellenwiderstand (Z0, Ω), die spezifische Signallaufzeit auf der Leiterplatte (D, ps/cm), die Signallaufzeit in der Leitung (tD, s) und die Leiterbahnlänge (LENGTH, cm). Der Z0-Wert einer FR-4-Leiterplatte liegt typischerweise zwischen 50 und 75 Ω, während D zwischen 55 und 71 ps/cm beträgt. Die tatsächlichen Werte von Z0 und D hängen vom Werkstoff der Übertragungsleitung und ihren mechanischen Abmessungen ab [1]. Die Signallaufzeit (tD) auf der jeweiligen Leiterplatte ist das Produkt aus der spezifischen Signallaufzeit D und der Leiterbahnlänge LENGTH. Bei FR-4-Platinen mit einem Wellenwiderstand von 50 Ω liegt die spezifische Signallaufzeit einer Leiterbahn bei 70 ps/cm.

Entscheidend ist die Ausgangsimpedanz

Der entscheidende Wert, der zur Beurteilung der Signalintegrität benötigt wird, ist die Ausgangsimpedanz ZT. Damit man die Ausgangsimpedanz ermitteln kann, enthält der mit [Pin] überschriebene Bereich des IBIS-Modells die ohmschen, induktiven und kapazitiven Widerstandskomponenten zu jedem Pin. Um ein klareres Bild zu erhalten, nimmt man zur Gehäusekapazität noch die Kapazität des jeweiligen Puffers (C_comp) hinzu.

Bild 2: Das Listing des Modells ads1296zxg samt der Werte für C_pin (Bild: TI)

Das Schlüsselwort [Pin] bezieht sich auf ein bestimmtes Gehäuse, das von den Angaben unter [Component], [Manufacturer] und [Package] oberhalb des Schlüsselworts [Pin] beschrieben wird. Man findet die Gehäuse spezifische Kapazität und Induktivität für den jeweiligen Pin in der Tabelle zum Schlüsselwort [Pin]. Zum Beispiel ist im Modell ads129x.ibs [2] (Bild 2) zu sehen, wo man nach den Werten L_pin und C_pin des Signals GPIO4 an Pin 5E (PBGA-64-Gehäuse) suchen muss. Die Werte L_pin (Pin-Induktivität) und C_pin (Pin-Kapazität) für dieses Signal und dieses Gehäuse lauten 1,489 nH bzw. 0,28001 pF. Der zweite interessierende Kapazitätswert ist die Angabe C_comp unter dem Schlüsselwort [Model]. Bild 3 zeigt ein Beispiel für die Auflistung von C_comp im Modell DIO_33 [2].

Bild 3: Beispiel für die Auflistung von C_comp im Modell DIO_33 [2] (Bild: TI) Bild 3: Beispiel für die Auflistung von C_comp im Modell DIO_33 [2] (Bild: TI)In Bild 3 steht das Zeichen ‚|‘ stets für einen Kommentar. Die C_comp-Angaben [3] lauten hier: C_comp_typ (nom PVT): 3,0727220 e–12 C_comp_min (fast PVT): 2,3187130 e–12 C_comp_max (slow PVT): 3,8529520 e–12 Die Liste lässt dem Leiterplattendesigner die Entscheidung zwischen drei Werten. Für das Design der Übertragungsleitung auf der Leiterplatte ist der typische Wert von 3,072722 pF die richtige Wahl.

Literatur

[1] Johnson, G.: High-speed Digital Design: A Handbook of Black Magic, Prentice Hall, ISBN: 0-13-395724-1 [2] ads129x.ibs, IBIS Model, sbam021b,Texas Instruments [3] Baker, B.: “Beyond the Data Sheet with IBIS”, EDN, 25. Mai 2011

Von Bonnie Baker, Texas Instruments.

Crest-Faktor und Spitzenwerte von HF-Signalen messen

Eine auf hohe Geschwindigkeit, geringen Stromverbrauch und eine unipolare Versorgungsspannung von 3,3 V optimierte Schaltung misst den Crest-Faktor sowie Spitzen- und Effektivwert von HF-Signalen.

Die Schaltung in Bild 1 misst den Spitzen- und Effektivwert von Leistung bei HF-Frequenzen von 450 MHz bis 6 GHz in einem Bereich von etwa 45 dB. Die Messergebnisse werden in differentielle Signale gewandelt, um Rauschanteile zu beseitigen. Bereitgestellt werden die Messergebnisse als digitale Informationen am Ausgang eines 12-Bit-SAR-A/D-Wandlers mit serieller Schnittstelle und integrierter Referenz. Eine einfache Zweipunkte-Kalibrierung wird im digitalen Bereich durchgeführt.

Bild 1: Stromsparende Schaltung zur schnellen Messung von Crest-Faktor, Spitzen- und Effektivwert von HF-Signalen (vereinfachte Blockschaltung; gezeigt sind nicht alle Verbindungen und auch nicht die Entkopplung) Bild 1: Stromsparende Schaltung zur schnellen Messung von Crest-Faktor, Spitzen- und Effektivwert von HF-Signalen (vereinfachte Blockschaltung; gezeigt sind nicht alle Verbindungen und auch nicht die Entkopplung)

Der ADL5502 ist ein Effektivwert-Leistungsdetektor in Kombination mit einem Hüllkurvendetektor zur genauen Ermittlung des Crest-Faktors eines modulierten Signals. Das Bauteil kann in HF-Empfänger- und Transmitter-Signalketten von 450 MHz bis 6 GHz mit Hüllkurvenbandbreiten über 10 MHz verwendet werden. Über die Peak-Hold-Funktion lassen sich mit A/D-Wandlern mit relativ niedrigen Abtastraten kurze Signalspitzen in der Hüllkurve erfassen. Die Stromaufnahme beträgt 3 mA bei 3 V.

Der ADA4891-4 ist ein schneller, vierkanaliger CMOS-Verstärker mit hoher Leistungsfähigkeit zu einem attraktiven Preis. Die Stromaufnahme des Bauteils beträgt 4,4 mA/Verstärker an 3 V. Der Verstärker weist die Fähigkeiten einer echten unipolaren Spannungsversorgung auf und bietet einen Eingangsspannungsbereich, der 300 mV unter der negativen Versorgungsspannung liegt.

Aufgrund der Rail-to-Rail-Ausgangsstufe erstreckt sich die Ausgangsspannung von 50 mV über der negativen Versorgungsspannung bis 50 mV unter der positiven Versorgungsspannung. Dies gewährleistet einen maximalen Dynamikbereich. Geringe Verzerrungen und kurze Einschwingzeiten prädestinieren den ADA4891-4 für diese Anwendung.

Der AD7266 ist ein schneller, zweikanaliger 12-Bit-SAR-A/D-Wandler mit geringem Stromverbrauch. Das Bauteil arbeitet an einer unipolaren Spannung von 2,7 bis 5,25 V und erreicht Abtastraten bis 2 MSample/s. Den beiden ADCs im AD7266 sind ein dreikanaliger Multiplexer sowie ein rauscharmer, breitbandiger Track-&-Hold-Verstärker nachgeschaltet, der mit Eingangsfrequenzen über 30MHz zurechtkommt. Die Stromaufnahme beträgt 3 mA bei 3 V. Ebenfalls im AD7266 enthalten ist eine 2,5-V-Referenz.

Unipolare Versorgungsspannung

Die Schaltung arbeitet an einer unipolaren Spannung von +3,3 V. Geliefert wird diese vom ADP121. Der ADP121 ist ein Linearregler mit geringem „Dropout“ und niedrigem Ruhestrom. Er arbeitet an 2,3 bis 5,5 V und bietet einen Ausgangsstrom bis zu 150 mA. Die Dropout-Spannung von 135 mV bei 150 mA Last erhöht die Effizienz und erlaubt den Betrieb über einen großen Eingangsspannungsbereich. Der Ruhestrom von 30 μA bei Volllast prädestiniert den ADP121 für batteriegespeiste, tragbare Geräte.

Den ADP121 gibt es mit Ausgangsspannungen von 1,2 bis 3,3 V. Das Bauteil ist für den stabilen Betrieb mit kleinen 1-μF-Keramikkondensatoren am Ausgang optimiert. Der ADP121 bietet ein gutes Transientenverhalten bei minimaler Grundfläche. Schutzschaltungen gegen Kurzschluss und Übertemperatur verhindern eine Beschädigung des Bauteils im Fehlerfall. Angeboten wird der ADP121 im winzigen 5-poligen TSOT-Gehäuse sowie im WLCSP-Gehäuse (Rasterabstand 0,4 mm). Aufgrund seiner sehr geringen Grundfläche eignet sich der ADP121 für viele tragbare Anwendungen.

Schaltungsbeschreibung

Das gemessene HF-Signal wird an den ADL5502 angelegt. Ein Abschlusswiderstand mit 75 Ω am HF-Eingang parallel zur Eingangsimpedanz des ADL5502 ermöglicht eine Breitbandanpassung von 50 Ω. Genauere Ohm’sche oder reaktive Anpassungen können für schmalere Frequenzbänder angewendet werden (siehe Abschnitt HF-Eingangsschnittstelle im Datenblatt des ADL5502).

Der interne Filterkondensator des ADL5502 ermöglicht Mittelwertbildung im quadratischen Bereich, belässt jedoch einen AC-Anteil am Ausgang. Signale mit hohen Spitze/Mittelwert-Verhältnissen wie zum Beispiel W-CDMA oder CDMA2000 können AC-Restspannungen am DC-Effektivwertausgang des ADL5502 produzieren. Um die Effekte dieser niederfrequenten Komponenten in den Signalverläufen zu reduzieren, ist eine zusätzliche Filterung erforderlich. Die interne Filterkapazität des ADL5502 im quadratischen Bereich kann mit einem Kondensator zwischen Pin 1 (FLTR) und Pin 2 (VPOS) erhöht werden.

Die AC-Restspannung lässt sich weiter reduzieren, indem man einen Kondensator an den Ausgang für den Effektivwert der Spannung schaltet. Die Kombination des internen 100-Ω-Ausgangswiderstands und der zusätzlichen Ausgangskapazität bildet ein Tiefpassfilter, das Ausgangs-Ripple des URMS-Ausgangs verringert (mehr Informationen im Abschnitt „Selecting the Square-Domain Filter and Output Low-Pass Filter“ im Datenblatt des ADL5502).

Spitzenwert messen

Um den Spitzenwert eines Signalverlaufs zu messen, muss die Steuerleitung (CNTL) temporär auf den Logikpegel „High“ (Reset Mode für >1 μs) gesetzt und dann auf den Logikpegel „Low“ zurückgesetzt werden. So lässt sich der ADL5502 auf einen bekannten Zustand initialisieren. Beim Einstellen des Bauteils zur Messung von Spitzenwerten sollte der Peak-Hold-Modus für eine Periode getoggelt werden, in welcher sich der Effektivwert der Eingangsleistung und der Crest-Faktor nicht ändern.

Falls sich der ADL5502 im Peak-Hold-Modus befindet und sich der Crest-Faktor von „High“ auf „Low“ ändert oder die Eingangsleistung von „High“ auf „Low“ wechselt, wird eine fehlerhafte Spitzenmessung signalisiert. Der ADL5502 meldet einfach den höchsten Spitzenwert der aufgetreten ist, als der Peak-Hold-Modus aktiviert war und die Eingangsleistung oder der Crest-Faktor „High“-Pegel hatten. Es sei denn CNTL ist zurückgesetzt, dann gibt der PEAK-Ausgang nicht den neuen Spitzenwert im Signal wieder.

Der ADL5502 kann einen effektiven Ausgangsstrom von etwa 3 mA liefern. Der Ausgangsstrom fließt durch den auf dem Chip integrierten Serienwiderstand von 100 Ω. Somit bildet jeder Lastwiderstand mit diesem On-Chip-Widerstand einen Spannungsteiler. Es wird empfohlen, den URMS-Ausgang des ADL5502 eine hohe Ohm’sche Last treiben zu lassen, damit der Ausgangsspannungshub erhalten bleibt. Falls bei einer Anwendung eine Last mit niedrigem Widerstand getrieben werden soll (sowie in Fällen, in denen eine Erhöhung des nominalen Wandlungsgewinns wünschenswert ist), ist eine Pufferschaltung erforderlich.

Der PEAK-Ausgang ist zum Treiben von 2-pF-Lasten ausgelegt. Es wird empfohlen, dass der PEAK-Ausgang des ADL5502 niedrige kapazitive Lasten treibt, um eine volle Ausgangsreaktionszeit zu erzielen. Die Effekte größerer kapazitiver Lasten sind speziell sichtbar beim Tracking von Hüllkurven während der fallenden Signalübergänge.

Befindet sich die Hüllkurve in einem fallenden Signalübergang, entlädt sich der Lastkondensator über den chipinternen Widerstand von 1,9 kΩ. Falls sich die größere kapazitive Last nicht vermeiden lässt, kann der zusätzlichen Kapazität entgegengewirkt werden, indem man einen Shunt-Widerstand zwischen Masse und den PEAK-Ausgang legt, um eine schnellere Entladung zu erreichen. Ein solcher Shunt-Widerstand erhöht den Strom des ADL5502 und sollte nicht niedriger als 500 Ω sein.

Einschaltzeit und Impulsverlauf

Bild 6: Verlauf des Ausgangspegels bei verschiedenen HF-Eingangspulsen, Versorgungsspannung 3 V, Frequenz 900 MHz, Square-Domain-Filter offen, Ausgangsfilter 0,1 µF Bild 6: Verlauf des Ausgangspegels bei verschiedenen HF-Eingangspulsen, Versorgungsspannung 3 V, Frequenz 900 MHz, Square-Domain-Filter offen, Ausgangsfilter 0,1 µF

Die Einschaltzeit und der Impulsverlauf sind stark von der Größe des Square-Domain-Filters (CFLTR) und dem an den URMS-Ausgang angeschlossenen Ausgangs-Shunt-Kondensator abhängig. Bild 6 (aus dem Datenblatt des ADL5502) zeigt den Verlauf des Ausgangssignals bei verschiedenen am RFIN-Pin angelegten HF-Impulen mit einem Ausgangsfilterkondensator von 0,1 μF und ohne Square-Domain-Filterkondensator (CFLTR). Die fallende Flanke wird speziell von der Kapazität des Ausgangs-Shunts bestimmt.

Um die fallende Flanke der Enable- und Pulsreaktionen zu verbessern, kann parallel zum Ausgangs-Shunt-Kondensator ein Widerstand geschaltet werden. Der zusätzliche Widerstand trägt dazu bei, den Filter-Kondensator am Ausgang zu entladen. Obwohl diese Methode die Abschaltzeit verkürzt, dämpft der zusätzliche Lastwiderstand auch den Ausgang (siehe Abschnitt „Output Drive Capability and Buffering“ im Datenblatt des ADL5502). Bild 7 (aus dem Datenblatt des ADL5502) zeigt die Verbesserung, die durch den zusätzlichen parallelen 1-kΩ-Widerstand erreicht wurde.

Bild 7: Ausgangsverhalten bei verschiedenen HF-Eingangspulsen, Versorgungsspannung 3 V, Frequenz 900 MHz, Square-Domain-Filter offen, Ausgangsfilter 0,1 µF mit Widerstand 1 kO parallel Bild 7: Ausgangsverhalten bei verschiedenen HF-Eingangspulsen, Versorgungsspannung 3 V, Frequenz 900 MHz, Square-Domain-Filter offen, Ausgangsfilter 0,1 µF mit Widerstand 1 kO parallel

Die RMS- und PEAK-Ausgänge des ADL5502 durchlaufen Puffer mit Einsverstärkung, die zur Wandlung der massebezogenen Ausgänge in differentielle Signale Stufen mit Cross-Kopplung treiben. Die interne 2,5-V-Referenz des AD7266 (über die DCAPA- und DCAPB-Pins) durchläuft einen weiteren Puffer mit Einsverstärkung und einen Spannungsteiler.

Dies setzt die Gleichtaktspannung des Netzwerks auf +1,25 V. Der AD7266 erzielt simultane Samples der RMS- und PEAK-Ausgänge und überträgt die Daten innerhalb einer Reaktionszeit von 1 μs. Die Daten werden auf einer seriellen Datenleitung bereitgestellt. Da Steigung und Achsenabschnitt (Intercept) von Bauteil zu Bauteil variieren, muss für hohe Genauigkeit eine Kalibrierung auf Boardebene durchgeführt werden.

In der Regel erfolgt die Kalibrierung, indem man zwei Eingangsleistungspegel an den ADL5502 anlegt und die zugehörigen Ausgangsspannungen misst. Die Kalibrierungspunkte werden normalerweise so gewählt, dass sie im linearen Arbeitsbereich des Bauteils liegen. Die am besten geeignete Gerade findet man, indem man den Wandlungsgewinn (oder die Steigung) und den Achsenabschnitt mithilfe der Gleichungen 1 und 2 berechnet:

Verstärkung = (UURMS2 − UURMS1)/(UIN2 − UIN1) (Gleichung 1)

Achsenabschnitt = URMS1 − (Verstärkung . UIN1) (Gleichung 2)

Darin sind UIN der Effektivwert der Eingangsspannung an RFIN und UURMS die Ausgangsspannung an VRMS.

Sobald Verstärkung und Achsenabschnitt berechnet sind, kann Gleichung 3 herangezogen werden, welche die Berechnung einer (unbekannten) Eingangsleistung, basierend auf der gemessenen Ausgangsspannung, erlaubt.

UIN = (UURMS − Achsenabschnitt) / Verstärkung (Gleichung 3)

Linearitätsfehler

Für eine ideale (bekannte) Eingangsleistung kann der Linearitätsfehler der gemessenen Daten nach Gleichung 4 berechnet werden:

Fehler (dB) = 20 log (UURMS, gemessen – Achsenabschnitt) / (Verstärkung  UIN, ideal) (Gl. 4)

Bild 8: VRMS-Linearitätsfehler in Abhängigkeit vom Eingangspegel, 450 MHz, 900 MHz, 1900 MHz, 2350 MHz, 2600 MHz, Versorgungsspannung +3,3 V Bild 8: URMS-Linearitätsfehler in Abhängigkeit vom Eingangspegel, 450 MHz, 900 MHz, 1900 MHz, 2350 MHz, 2600 MHz, Versorgungsspannung +3,3 V
Bild 9: PEAK-Linearitätsfehler in Abhängigkeit vom Eingangspegel, 450 MHz, 900 MHz, 1900 MHz, 2350 MHz, 2600 MHz, Versorgungsspannung +3,3 V Bild 9: PEAK-Linearitätsfehler in Abhängigkeit vom Eingangspegel, 450 MHz, 900 MHz, 1900 MHz, 2350 MHz, 2600 MHz, Versorgungsspannung +3,3 V

Die Bilder 8 und 9 zeigen den Verlauf des Ueff– und PEAK-Fehlers bei 25°C. Dies ist die Temperatur, bei welcher der ADL5502 kalibriert wird.

Zu beachten ist, dass der Fehler nicht Null beträgt. Dies ergibt sich aus der Tatsache, dass der ADL5502 selbst in seinem Betriebsbereich nicht optimal der idealen linearen Gleichung folgt. Der Fehler an den Kalibrierungspunkten ist jedoch laut Definition gleich Null.

Wenn die Charakteristika (Steigung und Achsenabschnitt) der VRMS- und PEAK-Ausgänge bekannt sind, ist die Kalibrierung für die Crest-Faktor-Berechnung vollständig. Ein dreistufiger Prozess muss verwendet werden, um den Crest-Faktor eines beliebigen Signalverlaufs zu messen und zu berechnen. Zunächst muss das unbekannte Signal an den HF-Eingang angelegt werden. Dann wird der zugehörige URMS-Pegel gemessen.

Bild 10: Wie man den Crest-Faktor berechnet Bild 10: Wie man den Crest-Faktor berechnet

Dieser Pegel ist in Bild 10 als VVRMS-UNKNOWN dargestellt. Der HF-Eingang, UIN, wird mit VVRMS-UNKNOWN und Gleichung 3 ermittelt.

Anschließend wird der CW-Referenzpegel von PEAK, UPEAK-CW, laut Gleichung 5 berechnet. Dazu wird UIN (dies ist die Ausgangsspannung, die die Schaltung „sehen” würde, wenn das eintreffende Signal ein CW-Signal wäre) verwendet.

UPEAK-CW = (UIN GainPEAK) + InterceptPEAK (Gleichung 5)

Abschließend wird der tatsächliche Pegel von PEAK, UPEAK-UNKNOWN, gemessen. Der Crest-Faktor CF lässt sich dann nach Gleichung 6 berechnen:

CF = 20 log 10 (UPEAK-UNKNOWN / UPEAK-CW) (Gleichung 6)

Bild 11: Crest-Faktoren verschiedener Signalverläufe Bild 11: Crest-Faktoren verschiedener Signalverläufe

Dabei dient UPEAK-CW als Referenzpunkt zum Vergleichen von UPEAK-UNKNOWN. Falls beide UPEAK-Werte gleich sind, beträgt der Crest-Faktor 0 dB. Dies zeigt Bild 11 mit dem CW-Signal (aus dem Datenblatt des ADL5502). Über den Dynamikbereich bewegt sich der Crest-Faktor um die 0-dB-Linie. Auch bei komplexen Signalverläufen mit Scheitelwerten von 3, 6 und 9 dB liegen die zugehörigen CF-Werte in diesen Bereichen.

Leiterplattenlayout entscheidet über die Leistungsfähigkeit

Die Leistungsfähigkeit dieser oder anderer schneller Schaltungen hängt stark vom Leiterplattenlayout ab. Dies beinhaltet unter anderem den Bypass der Stromversorgung, kontrollierte Impedanzleitungen (wo erforderlich), Bauteileplatzierung, Signal-Leitungsführung (Routing) und Power- sowie Masse-Flächen. (Siehe MT-031 Tutorial, MT-101 Tutorial, und Artikel “A Practical Guide to High-Speed Printed-Circuit-Board Layout” für mehr Informationen bezüglich Leiterplattenlayout).

Gemeinsame Abweichungen

Für Anwendungen, bei denen ein kleinerer HF-Erkennungsbereich erforderlich ist, kann der Effektivwert-Detektor AD8363 verwendet werden. Der AD8363 hat einen Erkennungsbereich von 50 dB und arbeitet bei Frequenzen bis 6 GHz. Für Anwendungen, bei denen der Effektivwert nicht erkannt werden muss, können die Bauteile AD8317/AD8318/AD8319 oder ADL5513 verwendet werden. Diese Bauteile bieten unterschiedliche Erkennungsbereiche und weisen verschiedene Eingangsfrequenzbereiche bis 10 GHz auf (siehe CN-0150 für weitere Informationen).

Schaltungsevaluierung und Test

Bei dieser Schaltung kommen das Schaltungsboard EVAL-CN0187-SDPZ und das Systemdemonstrationsplattform (SDP) Evaluation-Board EVAL-SDP-CB1Z zum Einsatz. Beide Boards verfügen über 120-polige Anschlüsse und ermöglichen einen schnellen Aufbau sowie die schnelle Überprüfung der Leistungsfähigkeit der Schaltung.

Die Platine EVAL-CN0187-SDPZ enthält die zu evaluierende Schaltung, wie hier beschrieben. Das SDP-Evaluation-Board wird in Verbindung mit der CN0187 Evaluierungssoftware verwendet, um die Daten vom EVAL-CN0187-SDPZ Schaltungsboard zu erfassen.

Erforderliche Geräte

  • PC mit USB-Port und Windows XP, Windows Vista (32 Bit) oder Windows 7 (32 Bit)
  • Schaltungs-Evaluierungsboard EVAL-CN0187-SDPZ
  • Evaluierungsboard EVAL-SDP-CB1Z SDP
  • Evaluierungssoftware CN0187
  • Versorgungsspannung: +6 V oder 6-V-Steckernetzteil
  • HF-Signalquelle
  • Koaxial-HF-Kabel mit SMA-Steckern

Erste Schritte

Laden der Evaluierungssoftware. Dazu wird die CD mit der Evaluierungssoftware in das PC-Laufwerk eingelegt und die Read-me-Datei, in der die Installation und die Verwendung der Evaluierungssoftware beschrieben sind, geöffnet.

Blockdiagramm mit den Funktionen

Bild 1 und die pdf-Datei EVAL-CN0187-SDPZ-SCH zeigen das Blockdiagramm. Die pdf-Datei befindet sich im Design Support Package CN0187.

Aufbau

Zunächst wird der 120-polige Stecker am EVAL-CN0187-SDPZ Schaltungsboard mit dem mit „CON A” gekennzeichneten Anschluss des EVAL-SDP-CB1Z Evaluation (SDP) Boards verbunden. Um die beiden Boards gut zu sichern, sollte Nylon-Hardware verwendet werden. Dazu dienen die Bohrungen an den Enden des 120-poligen Steckers. Mit einem geeigneten HF-Kabel und dem SMA HF-Eingangsstecker wird die HF-Signalquelle an das EVAL-CN0187-SDPZ Board angeschlossen.

Bei ausgeschalteter Stromversorgung wird eine 6-V-Spannung an die mit „+6 V” und „GND” bezeichneten Pins am Board angeschlossen. Falls verfügbar kann ein 6-V-Steckernetzteil an die Buchse für Hohlstecker am Board angeschlossen und statt der 6-V-Versorgungsspannung verwendet werden. Jetzt wird das im Lieferumfang des SDP-Boards enthaltene USB-Kabel an den USB-Port des PCs gesteckt. Zu beachten ist, dass das USB-Kabel zu diesem Zeitpunkt nicht an den Mini-USB-Stecker am SDP-Board angeschlossen wird.

Test

Jetzt wird die am EVAL-CN0187-SDPZ Schaltungsboard angeschlossene 6-V-Stromversorgung (oder das Steckernetzteil) eingeschaltet. Anschließend wird die Evaluierungssoftware gestartet und der PC über das USB-Kabel an den USB Mini-Stecker des SDP-Boards angeschlossen. Die Software kann mit dem SDP-Board kommunizieren, falls der Treiber für die Analog Devices Systementwicklungsplattform im Device Manager gelistet ist. Sobald die USB-Kommunikation aufgebaut ist, lassen sich mit dem SDP-Board serielle Daten vom EVAL-CN0187-SDPZ Board senden, empfangen und erfassen.

Die Daten in diesem Beitrag wurden mit der Signalquelle SMT-03 RF von Rohde & Schwarz und der Stromversorgung E3631A von Agilent erzeugt. Die Signalquelle war auf den in den Kurven angegebenen Frequenzen eingestellt. Die Eingangsleistung wurde in Stufen durchlaufen und die Daten in 1-dB-Inkrementen aufgezeichnet.

Informationen und Einzelheiten über die Nutzung der Evaluierungssoftware zur Datenerfassung befinden sich in der ReadMe-Datei der CN0187 Evaluierungssoftware. Informationen über das SDP-Board enthält der SDP User Guide.

Der Autor:  James Fitzgerald, Analog Devices.

Dynamische Stromverteilung in Ladeschaltungen leicht gemacht

In portablen Geräten steuert normalerweise ein interner Lade-IC das Laden des Akkus. Bei einem Lithium-Ionen-Akku gibt er zunächst einen konstanten Strom ab und danach eine konstante Spannung. Heute setzen diese ICs üblicherweise optimierte Laderoutinen ein und implementieren dabei eine dynamische Stromverteilung.

In der Vergangenheit hat man die Stromverteilung bei akkubetriebenen Geräte auf verschiedene Weise umgesetzt. Mit dem effizientesten Aufbau erzielt man die beste Nutzererfahrung bei maximaler Akkuschonung.

Dieser Beitrag beschreibt die Funktionsweise einer optimalen Stromverteilung und zeigt, wie man das Verfahren in einer hochintegrierten Stromsteuereinheit (PMU, Power Management Unit) umsetzen kann. Mit ihr kann man Stromversorgung und Akkuladung in Geräten wie etwa E-Book-Readern, Tablets und Mediaplayern platzsparend lösen.

Grundlegende Anforderungen an eine Ladeschaltung

Das Laden eines Akkus ist zunächst einmal einfach: Wird das betreffende Gerät an einen USB-Port oder an ein Netzteil angeschlossen, beginnt der Ladevorgang. Mit dem Einstecken wacht das Gerät typischerweise auf, es zieht dann Leistung aus der externen Quelle und speist damit das System und die interne Ladeschaltung.

Der Strom zur Versorgung des Systems wird dabei nicht aus dem Akku entnommen, der gerade geladen wird, sondern direkt aus der Stromquelle. Das hält die Zahl der Ladezyklen klein, schließlich zehrt jeder Lade- und Entladevorgang an der Lebenszeit des Akkus. Mit der Zahl der Lade- und Entladezyklen wird jeder Lithium-Ionen-Akku immer schwächer und fällt schließlich aus. Vermeidet man also eine unnötige Stromentnahme aus dem Akku, indem man beim Vorhandensein einer externen Stromquelle das System ohne Beteiligung des Akkus speist, verlängert dies das Leben des Akkus.

Das Gerät wird unabhängig vom Akku mit Strom versorgt

Ein weiterer Vorteil dieser Stromverteilung liegt darin, dass die Stromversorgung des Geräts unabhängig vom Akku erfolgt. Das Gerät startet auch mit leerem Akku sofort, ohne dass der Anwender warten muss, bis der Akku Spannung aufgebaut hat.

Bild 1: Der einfachste Aufbau einer Stromverteilung in einem akkubetriebenen Gerät mit zwei Schottky-Dioden, die ein logisches ODER bilden.

Im einfachsten Fall trennt eine Diode den Akku von der Systemstromversorgung, eine weitere Diode versorgt das System um den Akku herum (Bild 1). Die beiden Dioden bilden zusammen ein logisches ODER. Damit startet das System sofort, wenn es an eine externe Spannungsversorgung angeschlossen wird, derweil wird der Akku geladen und kann Spannung aufbauen. Diese einfache Schaltung hat aber verschiedene Nachteile. Der größte Nachteil ist der Spannungsabfall an den Schottky-Dioden, besonders nachteilig dabei ist der Leistungsverlust an D2, der bei Akkubetrieb auftritt. In diesem Fall geht an D2 Akkuleistung verloren.

Strom für das Gerät und zum Akku-Laden

Ein zweiter, weniger offensichtlicher Nachteil ist, dass die Ladeschaltung den Akku lädt, ohne dabei zu beachten, dass das Gerät selbst mit Strom versorgt werden möchte. Ist die Schaltung an einen normalen USB-Port angeschlossen, der gerade mal 500 mA Strom liefern kann, beansprucht die Ladeschaltung eventuell den ganzen Strom für sich und lässt für das System nichts mehr übrig. Schlimmer noch will die Ladeschaltung eventuell mehr als 500 mA Strom aus dem USB-Port ziehen und verletzt damit die USB-Spezifikation.

Ein MOSFET ersetzt die beiden Dioden

Bild 2: Ersetzt man die Dioden der Schaltung in Bild 1 durch MOSFETs, spart man sich den unnötigen Spannungsverlust im Akkubetrieb.

Ersetzt man die Dioden in Bild 1 durch einen MOSFET (M1 in Bild 2), ist das ein Schritt in die richtige Richtung. In diesem Fall sorgt der MOSFET für eine niederohmige Verbindung zwischen Akku und angeschlossenem Gerät, das ermöglicht sowohl ein Laden des Akkus als auch das unmittelbare Einschalten des Geräts, wenn die Spannungsquelle entfernt wird.

Braucht das System mehr Strom, als die Stromquelle liefern kann, kann der Akku über den PowerPath-FET die Differenz dazu liefern. Nachdem D1 nun nicht mehr vorhanden ist, kann der Lade-IC intern für eine Strombegrenzung sorgen und somit verhindern, dass der USB-Port überlastet wird.

Ein zweites Problem bleibt aber noch ungelöst: Die Strombegrenzung verhindert zwar die Überlastung des USB-Ports, aber sie verteilt den Strom nicht zwischen System und Batterieladung. Der Anwender wird normalerweise die volle Systemleistung wünschen und dafür eine verlängerte Ladezeit in Kauf nehmen, statt zu akzeptieren, dass sein System nicht genügend Speiseleistung bekommt, damit der Akku möglichst schnell geladen wird.

Um dieses Problem anzugehen, braucht man eine dynamische Stromverteilung, die den Ladestrom so steuert, dass die Leistungsfähigkeit der Quelle und der Strombedarf des angeschlossenen Systems berücksichtigt werden. Ziel dabei ist die volle Systemleistung bei externer Stromversorgung bei gleichzeitig minimaler Nutzung des Akkus in dieser Zeit.

Ein externer und ein interner MOSFET im Akkustrompfad

Bild 3: Dieser Aufbau bietet eine dynamische Stromverteilung.

Die Schaltung in Bild 3 arbeitet sowohl mit einem externen als auch einem internen MOSFET im Akkustrompfad. Dieser Aufbau bietet dynamische Leistungsverteilung.

Der externe MOSFET ist optional: Anwendungen mit hohem Strombedarf (bei denen viel Wärme abgeleitet werden muss), profitieren von einem externen Schaltelement. Wenn die Ladeschaltung abgeschaltet ist, versorgt der Akku das angeschlossen Gerät komplett selbst.

Ein Vorregler versorgt Ladeschaltung und System

Bild 4: Bei geringer Systemlast bleibt im Rahmen des Maximalstroms der Quelle noch Platz für einen Ladestrom (gelbe Pfeile).

Bild 4 zeigt, wie beim Anschluss an eine externe Stromquelle Ladeschaltung und System über einen Vorregler versorgt werden. Sowohl dessen Ausgangsspannung als auch sein Maximalstrom können konfiguriert werden.

Steigt der Strombedarf des Systems, sinkt der Ladestrom automatisch, damit der im Vorregler eingestellte Maximalstrom nicht überschritten wird, man erzielt so also eine dynamische Stromverteilung.

Bei vollem Akku wird das System komplett über den Vorregler versorgt

Bild 5: Ist der Akku voll geladen, öffnet sich der Ladeschalter, und aus dem Akku wird weiter kein Strom entnommen, solange das Gerät an eine externe Stromquelle angeschlossen ist.

Ist der Akku voll geladen, öffnet sich der Akkuschalter in Bild 5. Das System wird nun komplett über den Vorregler versorgt, aus dem Akku wird somit kein Strom entnommen, was dessen Lebensdauer verlängert. Überschreitet der Strombedarf des Systems (rot) den eingestellten Maximalstrom der externen Quelle kann der Akku zusätzlich Strom (gelb) über die PowerPath-FETs liefern („battery switch + ideal diode“ in Bild 5). Ist der programmierte Maximalstrom erreicht, sinkt VSUP_CHG minimal unter die Akkuspannung, so dass Strom aus dem Akku ins System fließen kann. Der Maximalstrom der externen Stromquelle wird aber nicht überschritten, so dass die Stromquelle nicht überlastet wird.

Integration einer dynamischen Stromsteuerung in eine PMU

Bild 6: Übersteigt der Strombedarf des Systems den Maximalstrom der externen Quelle, kann der Akku zusätzlichen Strom über den externen Schalter liefern.

In portabler Consumer-Elektronik, etwa in Tablets, ist Platz absolute Mangelware. Daher ist die Stromversorgung solcher Geräte meist mit einem Power Management IC (PMIC) aufgebaut, das die notwendigen Gleichspannungswandler in einem IC vereint.

Zur Vereinfachung des Designs der Stromversorgung und zur Platzersparnis wäre zu wünschen, dass die Ladeschaltung in diesen PMIC integriert ist. Aber wo bleibt dann die dynamische Stromsteuerung, wie sie oben beschrieben ist?

 

Dynamische Stromsteuerung mit einem PMIC

Bild 7: Die Ladeschaltung im PMIC AS 3711 unterstützt dynamische Stromsteuerung.

Bild 7 zeigt den optimalen Aufbau für die Implementation einer dynamischen Stromsteuerung mit einem AS3711, einem PMIC von ams für tragbare Geräte wie etwa Mediaplayer und Tablets. Der AS3711 verfügt über zwei Abwärtswandler mit 1 A, einen Abwärtswandler mit 1,5 A, einen Abwärtswandler mit 3 A, acht LDOs, zwei Aufwärtswandler und einen geschalteten Laderegler mit 1,5 A – und das alles in einem Gehäuse von 7 mm x 7 mm.

Ein Laderegler auf der Basis eines Schaltreglers lädt einen Akku effizienter als die üblicherweise eingesetzte lineare Ladeschaltung. Er braucht daher weniger Strom, so dass mehr vom Speisestrom für das angeschlossene System übrig bleibt (das von VSUP versorgt wird). Die höhere Effizienz des Schaltreglers senkt auch die thermische Verlustleistung während der Batterieladung. Der AS3711 bietet darüber hinaus einen Überspannungsschutz bis 30 V und einen strombegrenzenden Vorregler, der auf 16 unterschiedliche Stromwerte zwischen 0,1 und 2,5 A programmiert werden kann. Weiterhin ist die Spannung auf der VSUP_CHG-Schiene konfigurierbar.

PMIC mit integrierter Ladeschaltung spart Platz und Kosten

Setzt man ein PMIC mit einer integrierten Ladeschaltung ein, spart man Platz und Kosten eines separaten Lade-ICs. Weiterhin können alle Spannungen und der komplette Ladevorgang mit nur einem Registersatz eingestellt und überwacht werden. Über die grafische Benutzerschnittstelle des AS3711 kann man die Ladeschaltung des PMIC sowie die anderen Funktionsblöcke extrem einfach konfigurieren (siehe Bild 8). Man kann alle Funktionsblöcke von Bild 7 über diese GUI programmieren, wobei Erhaltungsladung, Konstantstromladung, Konstantspannungsladung, Zeit, Auszeit, Temperaturüberwachung, Strombegrenzung und Erkennung externer Überspannung konfigurierbar sind. Weiterhin besteht die Wahl zwischen linearem und geschaltetem Akkuladeverfahren.

Prinzipielle Vorteile durch Einsatz eines PMICs

Bild 8: Grafische Benutzerschnittstelle zur Konfiguration des PMICs AS 3711.

Der vorliegende Artikel hat gezeigt, dass dynamische Stromsteuerung den Akku schont und für eine optimale Systemleistung sorgt, wenn das Gerät an eine externe Stromversorgung angeschlossen ist.

Sie kann weiterhin den Akku als zusätzliche Stromquelle nutzen, wenn das System mehr Strom braucht, als die externe Quelle liefern kann. Somit kann man ein Netzteil kleiner dimenisionieren, was Kosten spart. Es muss ja nur die Akkuladung abdecken können, nicht aber gleichzeitig den Spitzenbedarf des Systems.

All diese Vorteile haben Anwender der neuesten PMICs für portable Geräte, wenn sie den Aufbau umsetzen, wie er oben am Beispiel des AS3711 dargestellt wurde. Dieser IC bietet ein effizientes Mittel dafür, den Ladestrom dynamisch an den Strombedarf des Systems anzupassen.

Die Implementierung einer dynamischen Stromsteuerung über ein PMIC bringt zusätzlich folgende Vorteile:

  • Platzersparnis, weil ein externer Lade-IC eingespart wird,
  • einfache Steuerung aller Spannungen per Software, einschließlich der Ladespannung,
  • vereinfachte Stromsteuerung über den PMIC, der Eingangsspannung, Akkuspannung, Systemspeisespannung und alle anderen Spannungen überwacht und intelligente Systeminterrupts generiert und automatisch handhabt.