Korrektes FET-Timing in synchronen Abwärtswandlern

Es gibt zwei Zustandswechsel während einer Schaltperiode: das Einschalten des Low-seitigen Schalters und das Einschalten des High-seitigen Schalters.

Kritisch ist das Einschalten des Low-seitigen Schalters, da dieser Zustandswechsel nahezu ohne Verluste erfolgt. Nach dem Abschalten des High-seitigen Schalters sorgt der Strom in der Drossel dafür, dass die Spannung am Schaltknoten verlustfrei auf das Massepotenzial gezogen wird. Das Ende dieses Zustandswechsels ist der beste Zeitpunkt zum Einschalten des Low-seitigen Schalters.

Es ist unkritisch, wenn die Body-Diode kurzzeitig leitend ist, bevor der Low-seitige Schalter einschaltet, da hieraus keine Sperrverzögerungsverluste entstehen. Außerdem werden überschüssige Ladungsträger in der Sperrschicht vor dem nächsten Zustandswechsel abgebaut. Allerdings kommt es zu einem übermäßigen Leitungsverlust, wenn der Strom in der Body-Diode übermäßig lange bestehen bleibt.

Das Timing für den Einschaltvorgang des High-seitigen FET ist deshalb auf den Zustandswechsel ausgerichtet.. Zu frühes Einschalten würde zu Shoot-Through-Verlusten durch Querströme über den Low-seitigen FET führen. Zu spätes Einschalten wiederum hat zusätzliche Leitungsverluste zur Folge und injiziert überschüssige Ladungsträger in die Body-Diode des Low-seitigen FET, die dementsprechend abgebaut werden müssen. Ob zu früh oder zu spät – beides geht zu Lasten des Wirkungsgrads.

Bild 1: Zu frühes Einschalten des high-seitigen Schalters hat Shoot-Through-Ströme zur Folge Bild 1: Zu frühes Einschalten des High-seitigen Schalters hat Shoot-Through-Ströme zur Folge

Um den Wirkungsgrad als Funktion des Einschaltens zwischen den beiden Treibersignalen zu charakterisieren, entwickelte ich Stromversorgungen, bei denen sich die Verzögerung der Treibersignale verstellen lässt. Die Bilder 1 bis 3 zeigen die Ergebnisse meiner Auswertung der Effizienz als Funktion der Verzögerungszeiten.

Der in Bild 1 gezeigte Verlauf ist zu beobachten, wenn der High-seitige FET einschaltet, bevor der Low-seitige FET vollständig abgeschaltet hat. Ein erweiterter Miller-Bereich zeigt sich bei der Gate-Ansteuerung des Low-seitigen FET, wenn der Low-seitige und der High-seitige FET gleichzeitig leitend sind und es dadurch zu Shoot-Through-Strömen im Leistungsteil kommt. Schaltet der Low-seitige FET schließlich ab, kommt es zu zusätzlichen Spannungs-Überschwingern am Schaltknoten.

Bild 2: Verzögert sich das Einschalten des high-seitigen Schalters, wird die Body-Diode leitend Bild 2: Verzögert sich das Einschalten des high-seitigen Schalters, wird die Body-Diode leitend

In Bild 2 wird der High-seitige FET eingeschaltet, nachdem der Low-seitige FET abgeschaltet hat und sich in der Body-Diode bereits ein Strom aufgebaut hat. Schaltet der High-seitige FET nun ein, stößt er den Erholungsvorgang der Body-Diode an und man sollte erwarten, dass eine Stromspitze die Spannung am Schaltknoten zum Schwingen bringt. Dass es hierzu nicht kommt, ist der extrem kurzen Sperrverzögerungszeit (12 ns) der verwendeten MOSFET-Body-Diode zu verdanken. Langsamere Body-Dioden würden tatsächlich ein erhebliches Schwingen verursachen.

 

Bild 3: Hier ist das optimale Timing zu sehen, das den Wirkungsgrad verbessert und die Belastung für die Bauelemente verringert Bild 3: Hier ist das optimale Timing zu sehen, das den Wirkungsgrad verbessert und die Belastung für die Bauelemente verringert

Der beste Wirkungsgrad stellt sich bei den in Bild 3 gezeigten Verhältnissen ein. Die Low-seitige Gate-Spannung geht hier beinahe auf das Massepotenzial zurück, bevor der High-seitige Schalter eingeschaltet wird. Der High-seitige Schalter wird eingeschaltet, bevor die untere Body-Diode leitend wird, sodass sich das Schwingen am Schaltknoten auf ein Mindestmaß beschränkt.

Bild 4 zeigt die Wirkungsgradkurve für die Leistungsstufe eines mit 300 kHz getakteten Wandlers mit 12-V-Eingangsspannung und einer Ausgangsspannung von 1 V/15 A, wenn das Einschalten der Gate-Ansteuerung variiert wird. Auf der linken Seite wird der High-seitige Schalter zu früh eingeschaltet wie in Bild 1, während das Einschalten rechts zu spät erfolgt (Bild 2). Der links erkennbare steile Abfall des Wirkungsgrads ist auf die Shoot-Through-Ströme im Leistungsteil zurückzuführen.

Bild 4: Diese Kurve macht die drastischen Auswirkungen des Treiber-Timings auf den Wirkungsgrad deutlich Bild 4: Diese Kurve macht die drastischen Auswirkungen des Treiber-Timings auf den Wirkungsgrad deutlich

Die (flacher verlaufende) Abnahme der Effizienz auf der rechten Seite hat zwei Ursachen, nämlich Leitungsverluste und Sperrverzögerungsverluste in der Body-Diode des Low-seitigen FET. Während die Body-Diode leitend ist, fällt an ihr eine Spannung von etwa 0,7 V ab. Während dieser Zeit errechnet sich der maximal erreichbare Wirkungsgrad der Stromversorgung näherungsweise gemäß Gleichung 1:

Gleichung 1 Gleichung 1

Wenn die Diode in jeder der 3 µs dauernden Schaltperiode für eine Zeitspanne von 50 ns leitend ist, wirkt sich dies mit rund 1,2 % auf den Gesamtwirkungsgrad aus. Bei der hier vorliegenden Leistungsstufe ist der Sperrverzögerungsverlust irrelevant, da MOSFETs mit kurzen Sperrverzögerungszeiten von 12 ns verwendet werden.

Zusammenfassend ist zu sagen, dass ein korrektes Einschalten der Gate-Treibersignale entscheidend für die Maximierung des Wirkungsgrads von synchronen Buck-Schaltreglern ist. Das Timing sollte so gestaltet sein, dass die Body-Diode des Low-seitigen FET nur für eine möglichst kurze Zeitspanne leitend ist. Das Einschalten des High-seitigen FET ist der kritischste Zustandswechsel und sollte erst dann erfolgen, wenn der Low-seitige FET vollständig abgeschaltet hat. Auf diese Weise werden die Schaltverluste minimiert, und auch das Schwingen der Spannung während des Zustandswechsels verringert sich.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.