Archiv der Kategorie: EPAP – Referenz-Designs

Schleifengespeistes Thermoelement-Temperaturmesssystem mit ARM Cortex-M3

Bild 1 zeigt eine komplette Stromschleifen-gespeiste Schaltung zur Messung von Temperaturen mit einem Thermoelement. Der Ausgangsstrom von 4 bis 20 mA wird mit der PWM-Funktion eines analogen Präzisionsmikrocontrollers gesteuert.

Bild 1: Schleifengespeistes Thermoelement-Temperaturmesssystem mit ARM Cortex-M3, das vom analogen Präzisionsmikrocontroller ADuCM360 gesteuert wird (vereinfachtes Schaltbild) (Bild: Analog Devices

Die Schaltung in Bild 1 ist eine preiswerte Lösung zum Erfassen von Temperaturen, da die meisten der erforderlichen Funktionen im analogen Präzisionsmikrocontroller ADuCM360 integriert sind. Dazu gehören zwei 24 Bit Sigma-Delta-A/D-Wandler, ein ARM Cortex-M3 Prozessor und die PWM/DAC-Funktionen zur Steuerung der 4/20-mA-Stromschleife für Schleifenspannungen bis 28 V.

Der ADuCM360 ist an ein Thermoelement (Typ T) und an einen Platin-Widerstandsthermometer mit 100 Ω (Pt-100) angeschlossen. Das Widerstandsthermometer dient zur Kaltstellenkompensation. Der Cortex-M3 mit geringer Stromaufnahme wandelt die Messwerte des A/D-Wandlers in Temperaturwerte. Das Thermoelement arbeitet bei Temperaturen von −200 bis 350°C. Dieser Temperaturbereich wird in Ausgangsströme von 4 bis 20 mA gewandelt.

Diese Schaltung ähnelt der Schaltung im Referenzdesign CN-0300. Allerdings hat die PWM, die die 4/20-mA-Schleife treibt, eine höhere Auflösung. Der PWM-Ausgang liefert eine Auflösung von 14 Bit. Einzelheiten über die Temperatursensorschnittstelle zum A/D-Wandler und über Linearisierungstechniken für die Messung mit dem Widerstandsthermometer enthalten das Referenzdesign CN-0300 und die Applikationsschrift AN-0970.

Schaltungsbeschreibung

Gespeist wird die Schaltung vom Linearregler ADP1720. Dieser regelt die positive Schleifenspannung auf 3,3 V für den ADuCM360, den Operationsverstärker OP193 und die Referenz ADR3412 (optional).

Temperaturmonitor

Dieser Teil der Schaltung ähnelt der im Referenzdesign CN-0300 beschriebenen Temperaturüberwachungsschaltung. Zum Einsatz kommen:

• Der 24 Bit Sigma-Delta-A/D-Wandler mit einem PGA, der in der Software für das Thermoelement und den Widerstandstemperatursensor für eine Verstärkung von 32 eingestellt ist. ADC1 schaltet kontinuierlich zwischen dem Abtasten der Thermoelement- und den Widerstandsthermometer-Spannungen um.

• Programmierbare Stromquellen treiben einen steuerbaren Strom durch das Widerstandsthermometer. Die zwei Stromquellen sind in Stufen von 0 μA bis 2 mA konfigurierbar. Für dieses Beispiel wird eine Einstellung von 200 μA verwendet, um den durch die Selbsterwärmung des Widerstandstemperatursensors verursachten Fehler zu minimieren.

• Eine interne 1,2-V-Referenz dient zur Versorgung des A/D-Wandlers im ADuCM360. Bei der Messung der Thermoelementspannung wird die interne Spannungsreferenz aufgrund ihrer Genauigkeit verwendet.

• Eine externe Spannungsreferenz für den A/D-Wandler im ADuCM360. Bei der Messung des Widerstands des Widerstandstemperatursensors wurde ein ratiometrischer Aufbau verwendet. Dabei wurde ein externer Referenzwiderstand (RREF) über die externen Pins VREF+ und VREF− gelegt. Der integrierte Referenzeingangspuffer ist aktiviert, da die Referenzquelle in dieser Schaltung hochohmig ist. Aufgrund des integrierten Referenzpuffers ist kein externer Puffer erforderlich, um Eingangsleckströme zu minimieren.

• Ein Biasspannungsgenerator (UBIAS). Mit der UBIAS-Funktion wird die Gleichtaktspannung des Thermoelements auf AVDD_REG/2 (900 mV) eingestellt. Die UBIAS-Funktion macht externe Widerstände zur Einstellung der Thermoelement-Gleichtaktspannung überflüssig.

• Der ARM Cortex-M3. Auf dem 32 Bit ARM Core mit integriertem 126 kB Flash-Speicher und 8 kB SRAM läuft der User Code, der die A/D-Wandler konfiguriert und steuert. Der ARM Core wandelt die Ergebnisse der ADC-Wandlungen der Theromoelement- und Widerstandsthermometer -Eingänge in einen Temperaturwert um. Außerdem steuert der ARM Core den PWM-Ausgang, der die 4/20-mA-Schleife treibt. Für Debug-Zwecke steuert der ARM Core die Kommunikation über die UART/USB-Schnittstelle.

Kommunikation

• Der 16 Bit PWM-Ausgang wird mit dem OP193 extern gepuffert. Er steuert einen externen NPN-Transistor (BC548). Indem man die Spannung UBE dieses Transistors steuert, lässt sich der Strom, der durch einen Lastwiderstand mit 47,5 Ω fließt, auf den gewünschten Wert einstellen. Dies sorgt am 4/20-mA-Ausgang für eine Genauigkeit von besser als ±0,5°C in einem Bereich von –200 bis 350°C (siehe Testergebnisse).

• Der interne D/A-Wandler liefert die 1,2-V-Referenz für den OP193. Alternativ könnte man die 1,2-V-Präzisionsreferenz ADR3412 verwenden. So ließe sich eine höhere Genauigkeit über die Temperatur erzielen. Diese externe Referenz nimmt ähnlich viel Strom auf wie der interne D/A-Wandler (~50 μA).

Die 4/20-mA-Schleife wird von der 16 Bit-PWM-Schaltung im ADuCM360 gesteuert. Das Tastverhältnis der PWM-Schaltung wird über die Software eingestellt, um die Spannung über dem 47,5-Ω-Widerstand RLOOP zu steuern. Dies wiederum stellt den Schleifenstrom ein. Eine Seite von RLOOP ist mit der Masse vom ADuCM360 verbunden. Die andere Seite von RLOOP ist mit „Loop“-Masse verbunden. Daher fließt der Strom für die Bauteile ADuCM360, ADP1720, ADR3412 und OP193 plus den Strom für den gefilterten PWM-Ausgang durch RLOOP.

Die Spannung an der Verbindung zwischen R1 und R2 kann wie folgt ausgedrückt werden:

UR12 = (URLOOP + UREF) × R2 / (R1 + R2) − URLOOP

Nach dem Einschwingen der Schleife:

UIN = UR12

Da R1 = R2:

UIN = (URLOOP + UREF)/2 − URLOOP = UREF/2 − URLOOP/2

URLOOP = UREF – 2 UIN

Der maximale Strom fließt bei UIN = 0. Dann ist URLOOP = UREF, da der maximale Strom UREF/RLOOP oder ≈24 mA beträgt. Bei UIN = UREF/2 fließt kein Strom.

Die Impedanz des Verstärkers OP193 bei UIN ist hoch und lädt den PWM-gefilterten Ausgang nicht. Der Verstärkerausgang variiert nur um einen kleinen Teil von etwa 0,7 V.

Die Leistungsfähigkeit bei den Endwerten (0 bis 4 mA und 20 bis 24 mA) ist unkritisch; daher braucht der Operationsverstärker keine gute Leistungsfähigkeit bei der Versorgungsspannung.

Die absoluten Werte von R1 und R2 sind ebenfalls unkritisch. Allerdings ist ein genaues Matching von R1 und R2 wichtig.

ADC1 wird für Temperaturmessungen verwendet. Daher ist dieser Schaltungstipp direkt auf den ADuCM361 mit nur einem A/D-Wandler anwendbar. Das Board EVAL-CN0319-EB1Z enthält die Option zur Messung der Spannung an dem mit VR12 bezeichneten Punkt. Dazu wird ein Eingangskanal von ADC0 am ADuCM360 verwendet. Diese ADC-Messung kann als Rückkopplung für die PWM-Steuerungssoftware verwendet werden, um die 4/20-mA-Stromeinstellung einzustellen.

Programmierung, Debugging und Test

• Der UART dient als Kommunikationsschnittstelle zum Host-PC. Dieser wird zur Programmierung des On-Chip Flash-Speichers verwendet. Er wird auch als Debug-Port und zur Kalibrierung des gefilterten PWM-Ausgangs verwendet.

• Über zwei externe Schalter lässt sich das Bauteil in die Flash-Betriebsart schalten. Indem man SD auf „Low“ hält und den RESET schaltet gelangt der ADuCM360 statt in die normale Anwenderbetriebsart in die Boot-Betriebsart. In der Boot-Betriebsart lässt sich der interne Flash-Speicher über die UART-Schnittstelle wiederprogrammieren.

Code-Beschreibung

Der zum Testen der Schaltung verwendete Quellcode kann von den ADuCM360 und ADuCM361 Produktseiten als Zip-Datei heruntergeladen werden. Der Quellcode nutzt die mit dem Beispielcode zur Verfügung gestellten Funktionsbibliotheken.

Bild 2: Source Files, betrachtet mit µVision4 (Keil)

Bild 2 zeigt die Liste von Source Files, die in diesem Projekt beim Betrachten mit den μVision4 Tools von Keil verwendet wurden.

Temperaturmonitor: ADC1 wird für Temperaturmessungen am Thermoelement und am Widerstandstemperatursensor verwendet. Dieser Teil des Codes ist vom Referenzdesign CN-0300 kopiert. Dort findet man auch mehr Informationen.

Kommunikationsbereich

Der PWM-gefilterte Ausgang muss eingestellt werden, um 4 mA bei der Minimal- und 20 mA bei der Maximaltemperatur zu gewährleisten. Eine Kalibrationsroutine wird zur Verfügung gestellt. Sie kann mit dem Parameter #define CalibratePWM leicht einbezogen oder entfernt werden.

Zum Kalibrieren der PWM muss das Schnittstellenboard (USB-SWD/UART) mit J1 und mit dem USB-Port eines PC verbunden werden. Ein COM-Port-Viewer-Programm, zum Beispiel HyperTerminal, kann verwendet werden, um die Kalibrierungsmenüs zu betrachten und durch die Kalibrierungsroutinen zu navigieren.

Beim Kalibrieren der PWM sollten die Ausgänge VLOOP+ und VLOOP– an ein Strommessgerät mit hoher Genauigkeit angeschlossen werden. Der erste Teil der PWM-Kalibrierungsroutine stellt den DAC für einen Ausgangsstrom von 20 mA ein. Der zweite Teil der PWM-Kalibrierungsroutine stellt die PWM auf einen Ausgangsstrom von 20 mA ein. Der PWM-Code zur Einstellung von Ausgangsströmen von 4 und 20 mA wird im Flash-Speicher abgelegt.

Bild 3: Ausgabe von HyperTerminal beim Kalibrieren der PWM

Der UART ist für eine Übertragungsrate von 19.200 Baud, 8 Datenbit, keine Parität und keine „Flow Control“ konfiguriert. Falls die Schaltung direkt an einen PC angeschlossen wird, kann ein Programm wie HyperTerminal oder CoolTerm zum Betrachten von Kommunikationsports verwendet werden, um die an den UART geschickten Resultate zu betrachten (Bild 3).

Zur Eingabe der von den Kalibrierungsroutinen benötigten Zeichen gibt man das jeweilige Zeichen in das Terminalprogramm ein. Dieses Zeichen wird dann vom UART-Port des ADuCM360 empfangen.

Nach der Kalibrierung schaltet der Demo-Code für weitere Energieeinsparungen den UART-Takt ab.

Kalibrierungskoeffizienten werden in Flash-Speichern abgelegt. Daher ist es nicht erforderlich, bei jedem Einschalten des Boards eine Kalibrierung durchzuführen. Es sei denn der Pegel von VLOOP wird verändert.

Bild 4: Flussdiagramm

Bild 4 zeigt ein Flussdiagramm.

Häufige Varianten: Diese Schaltung beinhaltet den Footprint für HART-Kommunikation und für eine externe Referenz.

Schaltungsevaluierung und Test

Dieser Beitrag geht nicht auf den Bereich zur Erfassung der Temperatur ein, da dieser bereits in der CN-0300 erläutert ist. Der Schwerpunkt liegt auf der Leistungsfähigkeit des Temperatur/Strom-Ausgangs.

Differenzielle Nichtlinearität der PWM

Bild 5: Typische DNL-Leistungsfähigkeit der Schaltung

Die differenzielle Nichtlinearität (DNL) des gefilterten PWM-Ausgangs wurde zuerst gemessen. Der DNL-Verlauf in Bild 5 zeigt im kritischen 4/20-mA-Bereich eine typische Leistungsfähigkeit von besser als 0,3 LSB. Diese Tests wurden mit einem Filter zweiter Ordnung am PWM-Ausgang durchgeführt. Zwei 47-kΩ-Widerstände und zwei 100-nF-Kondensatoren wurden verwendet, wie in Bild 1 gezeigt.

Temperatur/Strom-Ausgang

Bild 6: Messaufbau zum Testen des Kommunikationsbereichs

Der Aufbau in Bild 6 wurde zum Testen des Kommunikationsbereichs der Schaltung verwendet.

Der PC schickt über den UART Temperaturwerte an den ADuCM360. Anschließend stellt der ADuCM360 den PWM-Ausgang entsprechend ein. Der Strom in der Schleife wird gemessen und aufgezeichnet.

Ein Temperaturanstieg um 1 K ergibt (20 mA – 4 mA) / 550 = 0,029029 mA.

 

Bild 7: Fehler in der Stromschleife gegenüber den Temperaturmessungen für die DAC-Steuerung (CN-0300) und die PWM-Steuerung (CN-0319).

Den Fehler in der Stromschleife, gemessen in der CN-0300 (DAC-gesteuert) und in der CN-0319 (PWM-gesteuert), zeigt Bild 7.

Diese Ergebnisse zeigen, dass die Genauigkeit der PWM-gesteuerten Schleife nach der Kalibrierung höher ist als bei der DAC-gesteuerten Schleife mit Rückkopplung.

Für eine höhere Genauigkeit könnte man die Rückkopplungsschleife hinzunehmen. Dazu müsste man einen ADuCM360 verwenden, bei dem der zweite A/D-Wandler aktiviert ist, um die Schleife zu überwachen. Dies würde die Stromaufnahme (ADC0 on) erhöhen und die Reaktionszeit der Schleife verlängern.

Die Update Rate der Stromschleife hängt von der CPU und der ADC-Konfiguration ab. Im Beispielcode sind die CPU-Taktfrequenz auf 1 MHz und die ADC-Frequenz auf 5 Hz eingestellt. Der A/D-Wandler wandelt mehrere Messwerte am Widerstandsthermometer und am Thermoelement, bevor das Ergebnis gemittelt wird. Die Zahl der Messwerte wird durch den Parameter SAMPLEN0 definiert. Im Beispielcode ist dieser auf 8 eingestellt. Dies ergibt eine Stromschleifen-Update-Rate von 740 ms. Für eine kürzere Reaktionszeit der Schleife kann SAMPLEN0 reduziert werden.

Messung der Stromaufnahme

Im normalen Betrieb nimmt die Schaltung 2 mA (typ.) auf. Im Reset-Zustand kommt sie mit weniger als 550 μA aus. Um den Betrieb mit niedriger Stromaufnahme zu ermöglichen, kann die Core-Betriebsfrequenz der Bauteile ADuCM360/ADuCM361 reduziert werden. Dazu programmiert man die internen CLKSYSDIV-Register entsprechend. Durch Programmierung des CLKCON0-Registers kann man die Core-Frequenz von 16 MHz in binäre Vielfache von 2 bis 128 teilen. In diesem Beispiel-Code wird ein Taktteilerwert von 8 verwendet. Dies liefert eine Core-Frequenz von 1 MHz.

Der primäre A/D-Wandler wird mit einer Verstärkung von 32 aktiviert. PWM und D/A-Wandler sind ebenfalls für die Kommunikation in der Schleife aktiviert. Alle nicht benutzten Peripherieschaltungen sind abgeschaltet, um den Energieverbrauch zu minimieren.

Tabelle 2: Typische IDD-Werte für Bauteile der Temperaturüberwachungsschaltung

Aus Tabelle 2 ist die Stromaufnahme der einzelnen Bauteile und der Gesamtschaltung der Temperaturüberwachungsschaltung ersichtlich.

Mehr Informationen über die Stromaufnahme des ADuCM360 enthält die Applikationsschrift AN-1111.

Breitband-Synthesizer mit Quadratur-Demodulator-Interface

Die vorgestellte Schaltung beschreibt den einfachen Anschluss des Breitbandsynthesizers ADF4350 mit integriertem VCO an die Breitband-I/Q-Demodulatoren ADL5380 und ADL5387.

Die Schaltung in Bild 1 erläutert den einfachen Anschluss des Breitbandsynthesizers ADF4350 mit integriertem VCO (Voltage-Controlled Oscillator) an die Breitband-I/Q-Demodulatoren ADL5380 und ADL5387 von Analog Devices. Der ADF4350 liefert das Hochfrequenz-LO-Signal (Local Oscillator) mit geringem Phasenrauschen, das für breitbandige I/Q-Demodulatoren erforderlich ist. Die Schaltung eignet sich für Anwendungen, in denen Signale per Quadratur-Mixing hinunter auf das Basisband oder auf eine Zwischenfrequenz gewandelt werden müssen.

Bild 1: Einfache Schnittstelle zwischen dem PLL-Synthesizer ADF4350 und dem Quadratur-Demodulator ADL5380 oder ADL5387 (Bild: Analog Devices) Bild 1: Einfache Schnittstelle zwischen dem PLL-Synthesizer ADF4350 und dem Quadratur-Demodulator ADL5380 oder ADL5387 (Bild: Analog Devices)

Der ADF4350 verfügt über differenzielle HF-Ausgänge. Die Bauteile ADL5380/ADL5387 akzeptieren differenzielle Eingangssignale. Die Schnittstelle zeichnet sich einerseits durch ihre einfache Handhabung aus und bietet zugleich Vorteile in Hinblick auf die Leistungsfähigkeit. Die differenzielle Signalkonfiguration reduziert das Gleichtaktrausch und löscht LO-Harmonische geradzahliger Ordnung aus. Somit wird die Quadraturgenauigkeit des I/Q-Demodulators beibehalten. Darüber hinaus passt der Ausgangspegel des ADF4350 gut zur Eingangsleistung der Quadratur-Demodulatoren. Ein LO-Pufferverstärker ist somit nicht erforderlich.

Die Ausgänge des ADF4350 decken einen Frequenzbereich von 137,5 bis 4400 MHz ab. Der Frequenzbereich des ADL5387 erstreckt sich von 50 MHz bis 2 GHz, der ADL5380 arbeitet in einem Frequenzbereich von 400 MHz bis 6 GHz. Zwischen den Bauteilen ADL5380 und ADL5387 kann sich der HF-Eingangsbereich von 50 MHz bis 6 GHz erstrecken. Daher überstreicht die Zweichip-Konfiguration in Bild 1 einen Frequenzbereich von 50 MHz bis 4400 GHz.

Schaltungsbeschreibung

Beim ADF4350 handelt es sich um einen Breitband-Fractional-N- und Integer-N-PLL-Frequenzsynthesizer (Phase-Locked-Loop) für Frequenzen von 137,5 bis 4400 MHz. Das Bauteil verfügt über einen integrierten spannungsgesteuerten Oszillator (VCO) mit einem Basis-Frequenzbereich von 2200 bis 4400 MHz.

Der ADF4350 erreicht eine hohe Synthesizerleistungsfähigkeit. Je nach Demodulator-Architektur kann jedoch eine LO-Filterung erforderlich sein, um die Einflüsse von Harmonischen von der PLL auf die Quadraturgenauigkeit des I/Q-Demodulators zu minimieren.

Die Quadratur-Demodulatoren decken einen sehr großen Frequenzbereich ab: Beim ADL5387 von 50 MHz bis 2 GHz, beim ADL5380 von 400 MHz bis 6 GHz. Die Bauteile nutzen zwei verschiedene Architekturen, um die 90°-Phasenverschiebung zwischen den I- und Q-Pfaden zu erzeugen. Beim ADL5387 kommt eine Architektur zum Einsatz, bei der der Lokaloszillatoreingang mit der doppelten Frequenz getrieben wird.

Der ADL5380 arbeitet mit einem mehrphasigen, filterbasierten Phasensplitter. Die Mehrphasenarchitektur hat eine schmalere „Fractional“ Bandbreite (d.h., sie arbeitet über weniger Oktaven) und ist gegenüber Phasensplittern mit einem LO-Teiler empfindlicher gegenüber PLL-Harmonischen. Deshalb erfordert der ADL5380 eine Filterung der Harmonischen des LO, um die Quadraturgenauigkeit des I/Q-Demodulators aufrecht zu erhalten. Eine Filterung ist nur für den ADL5387 am oberen Ende seines Frequenzbereichs erforderlich.

Bild 2: Vereinfachter Phasensplitter mit 2x LO (Bild: Analog Devices) Bild 2: Vereinfachter Phasensplitter mit 2x LO (Bild: Analog Devices)

Bild 2 zeigt einen vereinfachten Phasensplitter mit 2x LO wie er im ADL5387 implementiert ist. Der 90°-Phasensplit des LO-Pfads wird mit einer Digitalschaltung erreicht, die D-Flipflops und einen Inverter nutzt. Diese Architektur benötigt einen externen LO, der mit der doppelten Frequenz des gewünschten LOs arbeitet.

 

 

 

Bild 3: Vereinfachte Schaltung eines mehrphasigen Filters erster Ordnung (Bild: Analog Devices) Bild 3: Vereinfachte Schaltung eines mehrphasigen Filters erster Ordnung (Bild: Analog Devices)

Bild 3 zeigt die vereinfachte Schaltung eines mehrphasigen Filters erster Ordnung, wie sie im ADL5380 implementiert ist. Die Mehrphasenschaltung besteht aus komplementären RC-Unterschaltungen, die eine Tiefpass-Übertragungsfunktion vom Eingang zu einem Ausgang sowie eine Hochpass-Übertragungsfunktion zum anderen Ausgang repräsentieren. Falls die R- und C-Werte der zwei Mehrphasenpfade aufeinander abgestimmt sind, haben beide Pfade die gleiche Eckfrequenz und die Phase eines Ausgangszweigs zum anderen ist um 90° versetzt.

Anschluss des ADF4350-PLL an den I/Q-Demodulator ADL5387

Die I/Q-Demodulatoren ADL5387 und ADL5380 nutzen unterschiedliche Architekturen, um das Ziel, präzise Quadratursignale zu erzeugen, zu erreichen. Beim Anschluss an einen LO-Synthesizer wie den ADF4350 muss darauf geachtet werden, wie die Architekturen auf das LO-Signal und seine Harmonischen reagieren. Dieses Verhalten bestimmt, ob eine LO-Filterung erforderlich ist.

Bild 4: ADF4350 PLL-Schnittstelle zum Phasensplitter mit 2x LO des Demodulators ADL5387 (Bild: Analog Devices) Bild 4: ADF4350 PLL-Schnittstelle zum Phasensplitter mit 2x LO des Demodulators ADL5387 (Bild: Analog Devices)

Bild 4 zeigt die Basisschnittstelle zwischen den Bausteinen ADF4350 und ADL5387. Je nach Frequenz ist zwischen ihnen ein Filter für LO-Harmonische notwendig.

In einem Splitter mit 2x LO ist die Quadraturgenauigkeit von der Genauigkeit des Tastverhältnisses des eintreffenden LOs abhängig. Die Anpassung der internen Teiler-Flipflops beeinträchtigt ebenfalls die Quadraturgenauigkeit, allerdings wesentlich geringer. Ein Tastverhältnis des externen LO von 50% ist zur Minimierung von Quadraturfehlern kritisch.

Darüber hinaus verursacht jede Unausgewogenheit der Anstiegs- und Abfallzeiten das Auftreten von Harmonischen gerader Ordnung. Bei der differenziellen Ansteuerung der Demodulator LO-Eingänge wird die Auslöschung der Harmonischen gerader Ordnung erreicht. Dies verbessert die Ergebnisse der gesamten Quadratur-Erzeugung.

Bild 5: ADL5387 Image-Unterdrückung gegenüber der HF-Frequenz (Bild: Analog Devices) Bild 5: ADL5387 Image-Unterdrückung gegenüber der HF-Frequenz (Bild: Analog Devices)

Mit einer Ziel-Image-Unterdrückung von –40 dBc zeigt Bild 5 die Leistungsfähigkeit des ADL5387 mit dem ADF4350, der die differenzielle LO-Quelle mit und ohne Filterung darstellt. Der blaue Signalverlauf, mit „Signalgenerator” beschriftet, ist der ideale Fall, bei dem der LO mit einem Signalgenerator von Rohde & Schwarz mit sinusförmigem Ausgangssignal und wesentlich niedrigeren Pegeln der Harmonischen gegenüber dem ADF4350 erzeugt wird. Dies ist der Idealfall und der Target-Vergleichspunkt.

Aus Bild 5 ist ersichtlich, dass bei Frequenzen unter 1 GHz keine Filterung erforderlich ist. Über 1 GHz werden kleine Fehler in Folge Harmonischer des LO zu einem größeren prozentualen Anteil der Eingangsperiode. In diesem Fall sollte eine Filterung verwendet werden, um die Harmonischen gerader Ordnung des LO weiter zu dämpfen. Somit lässt sich die für den I/Q-Demodulator spezifizierte Quadraturgenauigkeit erreichen.

Anschluss der ADF4350-PLL an den Quadratur-Demodulator ADL5380

Bild 6: ADF4350 Schnittstelle zur Mehrphasen-Filter-Architektur des Demodulators ADL5380 (Bild: Analog Devices) Bild 6: ADF4350 Schnittstelle zur Mehrphasen-Filter-Architektur des Demodulators ADL5380 (Bild: Analog Devices)

Im Gegensatz zum ADL5387 benötigt die Mehrphasen-Architektur des Phasensplitters ADL5380 eine Filterung der ADF4350-Ausgänge (Bild 6).

Die Filterung ist erforderlich, um die Harmonischen ungerader Ordnung des LO zu dämpfen und so Fehler im Quadraturerzeugungsblock des ADL5380 zu minimieren. Aus Messungen und Simulationen wie in der Applikationsschrift CN-0134 erklärt, tragen die Harmonischen ungerader Ordnung mehr als Harmonische gerader Ordnung zu Quadraturfehlern bei.

Bild 7: ADFL5380 Image-Unterdrückung in Abhängigkeit von der Frequenz (Bild: Analog Devices) Bild 7: ADFL5380 Image-Unterdrückung in Abhängigkeit von der Frequenz (Bild: Analog Devices)

Bild 7 zeigt die Messergebnisse, wobei die Ausgänge des ADF4350 gefiltert werden, bevor sie an die differenziellen LO-Eingänge des ADL5380 gelegt werden. Nach der Filterung ist die resultierende Image-Unterdrückung vergleichbar mit dem, was mit einem Signalgenerator mit geringen Harmonischen erreichbar ist.

Filteranforderungen

Zusammenfassend lässt sich feststellen, dass die LO-Filterung der Ausgänge des ADF4350 (unterdrückt werden die Harmonischen der Basisfrequenz) dabei hilft, die Phasengenauigkeit der Quadratursignale des Demodulators beizubehalten. Im Fall des ADL5380, der eine mehrphasige Architektur nutzt, ist Filterung ein Muss.

Die Architektur des ADL5387 besteht aus Digitalschaltungen, die eine höhere Immunität gegenüber Harmonischen des LO-Signals aufweisen. Daher kann je nach Betriebsfrequenz eventuell auf eine Filterung verzichtet werden.

Bild 8: ADF4350 HF-Ausgangsfilter (Bild: Analog Devices) Bild 8: ADF4350 HF-Ausgangsfilter (Bild: Analog Devices)

Für die Fälle, in denen eine Filterung erforderlich ist, zeigt Bild 8 ein Beispiel LO-Ausgangsfilterkonzept. Tabelle 1 fasst die Werte der Filterkomponenten zusammen. Diese Schaltung ist flexibel und bietet vier verschiedene Filteroptionen für vier unterschiedliche Frequenzbänder. Die Filter wurden für einen differenziellen Eingang mit 100 Ω und einen differenziellen 50-Ω-Ausgang entwickelt, um die Anforderungen an den LO-Eingang des Demodulators zu erfüllen. Ein Tschebyschev-Filter wurde verwendet, um ein optimales Filter Roll-off zu Lasten eines erhöhten Ripples im Durchlassband zu erreichen. Einzelheiten zur Filterung der ADF4350 Ausgänge findet man in der Applikationsschrift CN-0134.

Tabelle 1 Tabelle 1

 

Häufige Varianten

Die hier beschriebene Schnittstelle lässt sich für jede PLL mit differenziellen LO-Ausgängen sowie für jeden I/Q-Demodulator mit ein oder zwei LOs verwenden. Beim ADL5382 handelt es sich um einen I/Q-Demodulator mit einem LO, der von 700 bis 2700 MHz arbeitet und einen etwas höheren IP3 als der ADL5380 bietet. Die Bauteile AD8347 (1 × LO) und AD8348 (2 × LO) sind I/Q-Demodulatoren mit geringerer Stromaufnahme. Sie enthalten eingangsseitige VGAs (Variable Gain Amplifier; Verstärker mit analog gesteuerter Verstärkung) und Basisbandverstärker mit fester Verstärkung.

Schaltungsevaluierung und Test

Die Schaltungen in Bild 4 und Bild 6 wurden mit dem Evaluation Board CN-0134 (CFTL-0134EVALZ) und den Evaluation Boards ADL5387 bzw. ADL5380 implementiert. Die Evaluation-Plattform CN-0134 enthält den ADF4350, Pads für ein LO-Filter und differenzielle LO-Ausgänge für SMA-Steckverbinder. Der ADF4350 muss programmiert werden. Die Software zum Evaluation Board ist auf der CD im Lieferumfang enthalten.

Tabelle 2 Tabelle 2

Tabelle 2 listet die Bestellhinweise für die verschiedenen Evaluation Boards auf.

Das Evaluation Board ist wie in Tabelle 1 spezifiziert standardmäßig für ein Filterdesign von 850 bis 2450 MHz konfiguriert. Zur Implementierung eines alternativen Filters sind die jeweiligen Bauteile auszutauschen.

Erforderliche Geräte

  • Windows XP, Windows Vista (32 Bit) oder Windows 7, (32 Bit) PC mit USB-Port
  • Evaluation-Boards wie in Tabelle 2
  • HF-Signalquelle (Rohde & Schwarz SMT06 oder äquivalente)
  • Spektrumanalysator (Rohde & Schwarz FSEA30 oder äquivalenter)
  • Stromversorgungen: ADL5387-EVALZ: +5V; ADL5380-30A-EVALZ: +5V; CFTL-0134-EVALZ: +5,5V

Die Evaluationsplattform CN-0134 ermöglicht die einfache Evaluierung und verfügt über einen integrierten Quarz-Oszillator. Ein PC mit der Software des ADF4350 ist erforderlich, um den Synthesizer auf die gewünschte LO-Frequenz zu programmieren. Die Quadratur-Demodulatoren ADL5387/ADL5380 wandeln die HF-Frequenz hinunter auf das Basisband. Die differenziellen I- und Q-Basisband-Ausgänge werden an den FSEA-Spektrumanalysator im FFT-Mode angelegt und die Image-Unterdrückung wird gemessen.Bild 9 zeigt das Blockdiagramm des Testaufbaus.

Autor: Qui Luu, Analog Devices.

Universelles analoges Eingangsboard für SPS/DCS

In diesem Schaltungstipp stellen wir ein universelles analoges Eingangsboard mit vier- oder sechspoligen Anschlussblöcken vor, das für den Anschluss an SPSen und DCS-Module geeignet ist. Die Evaluierungssoftware wurde mit LabView entwickelt und arbeitet unter Windows XP, Vista und XP.

Die Schaltung in Bild 1 verfügt über zwei isolierte, universell verwendbare 16-Bit-Analogeingänge, die geeignet für den Anschluss an speicherprogrammierbare Steuerungen (SPS) und DCS-Module (Distributed Control System) sind. Beide Kanäle lassen sich per Software programmieren und unterstützen mehrere Spannungs- (0 bis 5 V; 0 bis 10 V; ±5 V; ±10 V) und Strombereiche (0 bis 20 mA; 4 bis 20 mA; ±20 mA) sowie verschiedene Thermoelemente (Typ K, J, T, S) und Widerstandsthermometer (RTD; PT100, PT1000).

Das Demonstrationsboard enthält zwei differenzielle, komplett isolierte und universell einsetzbare Eingangskanäle. Einer davon ist mit einem vierpoligen Anschlussblock (CH2), der andere mit einem sechspoligen Anschlussblock (CH1) ausgestattet. Beim vierpoligen Anschlussblock (CH2) teilen sich Spannungs-, Strom-, Thermoelement- und Widerstandsthermometer-Eingänge die gleichen vier Anschlüsse. Dadurch lässt sich die Anzahl der erforderlichen Anschlusspins minimieren. Beim sechspoligen Anschlussblock (CH1) nutzen die Spannungs- und Stromeingänge einen Satz mit drei Anschlüssen. Thermoelement- und RTD-Eingänge teilen sich ein weiteres Set mit drei Anschlüssen. Damit sind zwar mehr Anschlüsse erforderlich, doch reduzieren sich die Anzahl der Bauteile sowie die Bauteilkosten.

A/D-Wandler mit integriertem Instrumentenverstärker  

Der rauscharme 16 Bit A/D-Wandler AD7795 mit auf dem Chip integriertem Instrumentenverstärker und Referenz wird für die Datenwandlung verwendet. Durch die Ausstattung mit Instrumentenverstärker und Stromquellen repräsentiert der Sigma/Delta-Wandler eine Komplettlösung für Widerstandsthermometer- und Thermoelementmessungen.

Für die Spannungs- und Stromeingänge wird der Instrumentenverstärker AD8226 mit einer Gleichtaktunterdrückung >90 dB verwendet, um eine hohe Eingangsimpedanz zu erzielen und Gleichtaktinterferenzen zu unterdrücken. Die Spannungs- und Stromsignale werden mit einem Präzisionswiderstandsteiler auf den Bereich des A/D-Wandlers skaliert.

Der ADR441 ist eine extrem rauscharme Low-Dropout XFET-Spannungsreferenz mit 2,5 V und dient als Referenz für den A/D-Wandler. Für den vierpoligen Anschlussblock (CH2) wird der Latchup-feste Schalter ADG442 mit geringem Durchlasswiderstand (R ON ) verwendet, um zwischen Spannungs-, Strom-, Thermoelement- und RTD-Eingangsmodus umzuschalten.

Digital- und Versorgungsspannungs-Isolation  

Die Digital- und Versorgungsspannungs-Isolation wird mit dem ADuM3471 erreicht. Der ADuM3471 ist ein PWM-Controller und Transformatortreiber mit vierkanaligem Isolator, der zur Erzeugung einer isolierten Versorgungsspannung von ±15 V- mit einem externen Transformator dient. Auch der dreikanalige Digitalisolator ADuM1311 kommt bei der Schaltung mit vierpoligem Anschlussblock zum Einsatz. Er isoliert die Steuerleitungen für die Schalter ADG442.

Der 36 V Abwärts-DC/DC-Regler ADP2441 besitzt eine große Eingangsspannungstoleranz. Er eignet sich damit für in der Industrie übliche Versorgungsspannungen von 24 V. Das Bauteil akzeptiert bis zu 36 V und ermöglicht so einen zuverlässigen Transientenschutz am Versorgungseingang. Der ADP2441 erzeugt aus der Eingangsspannung jene 5 V, die den ADuM3471 sowie alle anderen Schaltungen auf der Controller-Seite versorgen. Die 24-V-Versorgung ist durch diskreten standardmäßigen Überspannungsschutz zusätzlich gesichert.

Zusatzfunktionen für Sicherheit und Zuverlässigkeit  

Der ADP2441 bietet eine Reihe von Zusatzfunktionen für Sicherheit und Zuverlässigkeit. Dazu gehören UVLO (Undervoltage Lockout), Precision Enable, Power-Good-Anschluss und interne Strombegrenzung. Der Baustein erreicht in der Konfiguration für 24 V am Eingang und 5 V am Ausgang einen Wirkungsgrad bis zu 90%.

Den ausführlichen Tipp finden Sie im Internet.

Der Autor: Songtao Mu arbeitet als Segment System Application Engineer bei Analog Devices in Wilmington, USA.

Isolierter analoger Ausgangskanal mit HART-Anschluss

 

 

 

In diesem Schaltungstipp stellen wir Ihnen einen komplett isolierten, einkanaligen Spannungs- und 4/20-mA-Stromausgang mit HART-Konnektivität vor.

 Bild 1: Blockschaltung (vereinfachte Darstellung; nicht alle Verbindungen und Entkopplung sind eingezeichnet) des isolierten Ausgangskanals für SPS/DCS-Steuermodule. Bild 1: Blockschaltung (vereinfachte Darstellung; nicht alle Verbindungen und Entkopplung sind eingezeichnet) des isolierten Ausgangskanals für SPS/DCS-Steuermodule.

Die Schaltung in Bild 1 zeigt einen vollständigen, komplett isolierten analogen Ausgangskanal, der sich für SPSen und verteilte Steuerungssystemmodule (DSC) eignet. Die Stromausgänge sind HART1-kompatibel (4/20 mA), die Ausgangsspannungen unipolar oder bipolar. Die Schaltung ist als flexibler Funktionsblock für SPS/DCS-Ausgangsmodule mit galvanischer Trennung zwischen den Kanälen oder für andere Industrieanwendungen, die einen komplett isolierten Analogausgang benötigen, gedacht.

Der 16 Bit D/A-Wandler AD5422 lässt sich per Software konfigurieren und stellt alle erforderlichen Strom- und Spannungsausgänge zur Verfügung (±5 V; ±10 V; 0/+5 V; 0/+10 V; +4/20 mA; 0/20 mA). Ein Überlastschutz von 10% ist an allen Spannungsbereichen gegeben. Das Bauteil enthält einen internen LDO am Anschluss DVcc zur Versorgung der Niedervoltschaltung.

Die 5-V-Präzisionsreferenz ADR02 ermöglicht eine Eingangsspannung bis 36 V. Sie weist eine maximale Genauigkeit von 0,05% sowie eine maximale Temperaturdrift von 3 ppm/°C auf. Das entspricht einem Fehler von etwa 0,02% über den industriellen Temperaturbereich.

Das HART-konforme IC-Modem AD5700-1 wird in Verbindung mit dem D/A-Wandler AD5422 verwendet, um eine komplette HART-konforme 4/20mA-Lösung zu bilden. Das Modem enthält einen Präzisionsoszillator, der für zusätzliche Platzersparnis sorgt – speziell in Anwendungen mit isolierten Kanälen. Der Ausgang des HART-Modems wird durch C1 und C2 gedämpft und über den Anschluss CAP2 in den AD5422 AC eingekoppelt.

SPS/DCS-Lösungen müssen vom lokalen Systemcontroller isoliert sein, um diesen vor Masseschleifen und externen Ereignissen zu schützen. Bei herkömmlichen Lösungen kommen diskrete ICs sowohl für Spannung wie auch für digitale Isolation zum Einsatz. Wenn eine mehrkanalige Isolation benötigt wird, sind die Kosten und der Platzbedarf von diskreten Power-Lösungen ein großer Nachteil.

Die Schaltung nutzt den vierkanaligen Digitalisolator mit integrierter Leistungsregelung für eine isolierte Leistung bis zu 2 W. Ein externer Transformator wird zur Leistungsübertragung über die Isolationsstrecke verwendet. Diese wird mit einer Brücke (D1 bis D4) gleichgerichtet. Die Regelung erfolgt von der 15-V-Versorgung über das Widerstandsteilernetzwerk (R1 und R2). Die negative Versorgung wird nur „lose“ geregelt.

Der ADP2441, ein 36 V Abwärts-DC/DC-Wandler akzeptiert eine Versorgungsspannung von 24 V mit einem Eingangsspannungsbereich von 4,5 bis 36 V. Er regelt die Versorgungsspannung auf 5 V herunter, mit der alle Controller-seitigen Schaltungen gespeist werden. Das Bauteil verfügt über eine Reihe von Sicherheits-/Zuverlässigkeitsfunktionen wie UVLO (Undervoltage Lockout), eine Präzisions-enable Funktion, einen „Power Good“-Anschluss und eine Überstromschutzschaltung.

Der AD5422 enthält Schutzdioden, die ihn vor Beschädigung bei normalem Gebrauch schützen. In der industriellen Steuerungsumgebung erfolgt der Schutz vor Transienten mit Überspannungsableitern, Strombegrenzungswiderständen und Dioden. Die Leistungsfähigkeit wurde bei 25°C evaluiert und lag innerhalb der erwarteten Grenzen: –0,05% TUE (Total Unadjusted Error) und –4 LSB INL im 4/20mA-Bereich.

Den ausführlichen Tipp finden Sie im Internet.

Der Autor: Derrick Hartmann arbeitet als Applikationsingenieur in der DAC-Gruppe bei Analog Devices in Limerick / Irland.

Leistungsfähiger Breitband-Empfänger mit Antialiasing-Filter

In diesem Schaltungstipp stellen wir eine schnelle Empfänger-Eingangsstufe mit einer Bandbreite von 152 MHz vor. Sie besteht aus einem rauscharmen differenziellen Verstärker und einem 16 Bit A/D-Wandler mit einer Abtastrate von 250 MSample/s.

Die Schaltung in Bild 1 zeigt eine Empfänger-Eingangsstufe mit großer Bandbreite, die aus dem rauscharmen differentiellen Verstärker ADL5562 und dem 16 Bit A/D-Wandler AD9467 (mit einer Abtastrate von 250 MSample/s) aufgebaut ist.

Der Butterworth-Antialiasing-Filter dritter Ordnung wurde entsprechend der Verstärker- und A/D-Wandler-Spezifikationen in puncto Leistungsfähigkeit und Schnittstellen optimiert. Die Einfügeverluste, die durch das Filternetzwerk und andere Komponenten verursacht werden, betragen 1,8 dB.

Die Schaltung offeriert eine Bandbreite von 152 MHz mit einer Flachheit im Durchlassbereich von 1 dB. Das SNR (Signal-Rausch-Verhältnis) und der SFDR (störungsfreier Dynamikbereich), gemessen mit einem Analogeingangssignal von 120 MHz, betragen 72,6 dBFS bzw. 82,2 dBc.

Schaltungsbeschreibung

Die Schaltung arbeitet mit massebezogenen Eingangssignalen und wandelt diese mit einem Breitband (3 GHz) 1:1-Transformator des Typs M/A-COM ECT1-1-13M in differentielle Signale um. Der differentielle 3,3-GHz-Verstärker ADL5562 hat eine differentielle Eingangsimpedanz von 400 Ω, bei einer Verstärkung von 6 dB und 200 Ω bei einer Verstärkung von 12 dB. Eine Verstärkungsoption von 15,5 dB ist ebenfalls verfügbar.

Der ADL5562 ist ein idealer Treiber für den AD9467. Die komplett differentielle Architektur durch den Tiefpassfilter und in den A/D-Wandler bietet eine gute HF-Gleichtaktunterdrückung und minimiert Verzerrungsprodukte zweiter Ordnung.

Der Chip bietet je nach Eingang eine Verstärkung von 6 oder 12 dB. In der gezeigten Schaltung wurde eine Verstärkung von 6 dB verwendet, um die Einfügeverluste von Filternetzwerk und Transformator (etwa 1,8 dB) zu kompensieren. Dies bietet eine Signalverstärkung von insgesamt 3,9 dB.

Ein Eingangssignal von +6,0 dBm produziert ein differentielles Vollsausschlags-Signal von 2 Vss am ADC-Eingang.

Der Antialiasing-Filter ist ein Butterworth-Filter dritter Ordnung, der mit einem Standard-Filterprogramm entwickelt wurde. Der Butterworth-Filter wurde wegen seines flachen Verlaufs im Durchlassband gewählt. Ein Filter dritter Ordnung erzielt ein AC-Rauschbandbreiten/Signalbandbreitenverhältnis von 1,05 und kann mit Hilfe kostenloser Filterprogramme wie z.B. dem von Nuhertz oder Quite Universal Circuit Simulator – Qucs entwickelt werden.

Um eine optimale Leistungsfähigkeit zu erzielen, sollte der ADL5562 mit einer differentiellen Last von 200 Ω beaufschlagt werden. Die 15-Ω-Widerstände isolieren die Filterkapazität vom Verstärkerausgang, während die 243-Ω-Widerstände parallel zur Downstream-Impedanz eine Lastimpedanz von 203 Ω ergeben, wenn sie zum 30-Ω-Serienwiderstand addiert werden. Die 20-Ω-Widerstände in Reihe mit den ADC-Eingängen isolieren interne Schalttransienten vom Filter und Verstärker. Der 511-Ω-Widerstand parallel zum A/D-Wandler reduziert die Eingangsimpedanz des A/D-Wandler für eine besser vorhersagbare Leistungsfähigkeit.

Der Butterworth-Filter dritter Ordnung wurde mit einer Quellimpedanz von 38,6 Ω, einer Lastimpedanz von 269 Ω und einer 3-dB-Bandbreite von 180 MHz entwickelt. Die vom Programm berechneten Werte werden in Bild 1 gezeigt. Die für die passiven Komponenten des Filters gewählten Bauteile sind Standardwerte, die den vom Programm erzeugten Werten am nächsten kommen.

 Bild 2: Differentielles Butterworth-Filter dritter Ordnung mit ZS = 38,6 Ω, ZL = 269 Ω und FC = 180 MHz Bild 2: Differentielles Butterworth-Filter dritter Ordnung mit ZS = 38,6 Ω, ZL = 269 Ω und FC = 180 MHz

Der interne Kondensator des ADC mit einer Kapazität von 3,5 pF wurde vom Wert des zweiten Shunt-Kondensators subtrahiert, damit eine Kapazität von 32,29 pF erzielt wird.

In der Schaltung wurde dieser Kondensator mit zwei 62-pF-Kondensatoren, verbunden mit Masse, realisiert (Bild 2). Dies liefert den gleichen Filtereffekt und bietet ein kleines Maß an AC-Gleichtaktunterdrückung.

 Bild 3: Flachheit des Durchlassbands in Abhängigkeit von der Frequenz Bild 3: Flachheit des Durchlassbands in Abhängigkeit von der Frequenz

Die gemessene Leistungsfähigkeit des Systems fasst Tabelle 1 zusammen. Die 3-dB-Bandbreite beträgt 152 MHz. Der gesamte Einfügeverlust des Netzwerks beträgt etwa 2 dB. Bild 3 zeigt den Bandbreitenverlauf. Aus Bild 4 sind SNR und SFDR ersichtlich.

 Bild 4: SNR/SFDR in Abhängigkeit von der Frequenz Bild 4: SNR/SFDR in Abhängigkeit von der Frequenz

Filter- und Schnittstellendesign

Im Folgenden wird ein allgemeines Konzept zur Entwicklung der Verstärker/ADC-Schnittstelle mit Filter vorgestellt. Um die optimale Leistungsfähigkeit (Bandbreite, SNR, SFDR etc.) zu erzielen, müssen bestimmte Anforderungen erfüllt werden:

  • Am Verstärker sollte die richtige DC-Last anliegen, wie sie im Datenblatt für eine optimale Leistungsfähigkeit empfohlen wird.
  • Für den Reihenwiderstand muss der richtige Wert zwischen Verstärker und der durch den Filter repräsentierten Last gewählt werden. Dadurch können unerwünschte Spitzen im Durchlassband verhindert werden.
  • Die Eingangsimpedanz am A/D-Wandler sollte mit einem externen Parallelwiderstand reduziert werden. Der richtige Reihenwiderstand sollte verwendet werden, um den ADC vom Filter zu isolieren. Dieser Serienwiderstand reduziert auch Spitzen, sogenanntes „Peaking”.
 Bild 5: Verallgemeinerte Schnittstelle zwischen differentiellem Verstärker und A/D-Wandler mit Tiefpassfilter Bild 5: Verallgemeinerte Schnittstelle zwischen differentiellem Verstärker und A/D-Wandler mit Tiefpassfilter

Die verallgemeinerte Schaltung in Bild 5 gilt für die meisten schnellen differentiellen Verstärker/ADC-Schnittstellen und dient als Basis für die Diskussion. Das Design nutzt die relativ hohe Eingangsimpedanz der meisten schnellen A/D-Wandler und die relativ geringe Impedanz des Treibers (Verstärker), um den Einfügungsverlust des Filters zu minimieren.

Die Schaltung wird in der Regel wie folgt entwickelt:

  • Auswahl des externen ADC-Abschlusswiderstands RTADC, so dass die parallele Kombination aus RTADC und RADC zwischen 200 und 400 Ω liegt.
  • Auswahl von RKB basierend auf Erfahrung und/oder den Empfehlungen im Datenblatt des A/D-Wandlers. Der Wert liegt normalerweise zwischen 5 und 36 Ω.
  • Berechnen der Filterlastimpedanz mit der Gleichung ZAAFL = RTADC || (RADC + 2 RKB)
  • Auswahl des externen Serienwiderstands für den Verstärker (RA). RA sollte kleiner als 10 Ω sein, falls die differentielle Ausgangsimpedanz des Verstärkers 100 bis 200 Ω beträgt. RAsollte zwischen 5 und 36 Ω liegen, wenn die Ausgangsimpedanz des Verstärkers 12 Ω oder weniger beträgt.
  • Auswahl von RTAMP so, dass die vom Verstärker „gesehene” Gesamtlast ZALoptimal für den bestimmten differentiellen Verstärker, gewählt nach der Gleichung ZAL = 2 RA + (ZAAFL || 2 RTAMP), ist.
  • Berechnen des Filter-Quellwiderstands mit ZAAFS = 2 RTAMP || (ZO + 2 RA).
  • Anhand eines Filterdesignprogramms oder Tabellen erfolgt die Entwicklung des Filters mit den Quell- und Lastimpedanzen ZAAFS und ZAAFL, Filtertyp, Bandbreite, Ordnung etc. Es sollte eine Bandbreite gewählt werden, die etwa 40% höher ist als die halbe Abtastrate, um einen flachen Anstieg im Frequenzbereich von DC bis fs/2 sicherzustellen.
  • Die interne ADC-Kapazität CADC sollte vom finalen Shunt-Kondensatorwert, generiert vom Programm, subtrahiert werden. Das Programm liefert den Wert CSHUNT2 für den differentiellen Shunt-Kondensator. Die finale Gleichtakt-Shunt-Kapazität beträgt CAAF2 = 2(CSHUNT2 – CADC).

Nach diesen vorläufigen Berechnungen sollte die Schaltung auf folgende Eigenschaften hin überprüft werden:

  • Der Wert von CAAF2 sollte mindestens 10 pF betragen, damit er um ein Mehrfaches höher ist als CADC. Dies minimiert die Empfindlichkeit des Filters auf Abweichungen im CADC.
  • Das Verhältnis von ZAAFL zu ZAAFS sollte nicht mehr als 7 betragen, damit der Filter in den Grenzen der meisten Filtertabellen und Designprogramme liegt.
  • CAAF1 sollte eine Kapazität von mindestens 5 pF haben, um die Empfindlichkeit gegenüber parasitären Kapazitäten und Bauteileabweichungen zu minimieren.
  • Sinnvoll für die Induktivität LAAF ist ein Wert von mindestens einigen nH.
 Tabelle 1: Gemessene Leistungsfähigkeit der Schaltung Tabelle 1: Gemessene Leistungsfähigkeit der Schaltung

In einigen Fällen liefert das Simulationsprogramm zur Filterentwicklung mehr als eine einzige Lösung. Dies ist insbesondere bei Filtern höherer Ordnung der Fall. Die Lösung, welche die realistischsten Bauteilewerte liefert sollte stets ausgewählt werden. Ebenfalls sollte eine Konfiguration mit Shunt-Kondensator verwendet werden, damit diese sich mit der ADC-Eingangskapazität kombinieren lässt.

Schaltungsoptimierungstechniken und Kompromisse

Die Parameter in dieser Schnittstellenschaltung sind sehr interaktiv. Deshalb ist es fast unmöglich, die Schaltung für alle Schlüsselspezifikationen wie Bandbreite, Bandbreiten-Flachheit, SNR, SFDR und Verstärkung zu optimieren. Allerdings kann das „Peaking”, das oft im Bandbreitenverlauf auftritt, minimiert werden, indem man RA und RKB variiert.

 Bild 6: Anstieg des Durchlassbands in Abhängigkeit vom Serienwiderstand am Vertärker Ausgang RA Bild 6: Anstieg des Durchlassbands in Abhängigkeit vom Serienwiderstand am Vertärker Ausgang RA

Bild 6 zeigt, wie sich das „Peaking“ des Durchlassbands reduziert, wenn der Wert des Ausgangs-Serienwiderstands RAerhöht wird. Wenn der Wert dieses Widerstands erhöht wird, gibt es jedoch eine größere Signaldämpfung und der Verstärker muss ein größeres Signal treiben, um den Vollausschlags-Eingangsbereich des A/D-Wandlers zu nutzen.

Der Wert von RA beeinflusst auch das SNR. Höhere Werte reduzieren zwar Spitzen in der Bandbreite, neigen aber dazu, das SNR leicht zu erhöhen. Dies ist auf den höheren Signalpegel zum Treiben des ADC-Full-Scale zurückzuführen.

Der Serienwiderstand RKB an den ADC-Eingängen sollte so gewählt werden, dass er die durch Charge Injection des internen Sampling-Kondensators im A/D-Wandler verursachte Verzerrung minimiert. Eine Erhöhung dieses Widerstands kann ebenfalls Spitzen in der Bandbreite reduzieren.

Erhöht man jedoch RKB, steigt auch die Signaldämpfung und der Verstärker muss ein größeres Signal treiben, um den ADC-Eingangsbereich zu füllen.

Eine andere Methode, um den Anstieg im Durchlassbereich zu optimieren ist, den Filter-Shunt-Kondensator CAAF2 etwas zu verändern.

Der ADC-Eingangs-Abschlusswiderstand RTADC sollte normalerweise so gewählt werden, dass die Eingangsimpedanz des A/D-Wandlers zwischen 200 und 400 Ω liegt. Macht man ihn kleiner, reduziert sich der Einfluss der ADC-Eingangskapazität. Dies kann der Filter stabilisieren, erhöht aber den Einfügeverlust der Schaltung. Eine Erhöhung des Wertes reduziert ebenfalls das „Peaking“.

Einen ausgewogenen Kompromiss zu finden, kann schwierig sein. In dieser Schaltung hat jeder Parameter die gleiche Gewichtung. Deshalb sind die gewählten Werte repräsentativ für die Schnittstellen-Leistungsfähigkeit aller Design-Charakteristika. In einigen Schaltungen werden eventuell verschiedene Werte gewählt, um je nach Systemanforderungen SFDR, SNR oder Eingangspegel zu optimieren.

Die SFDR-Leistungsfähigkeit in dieser Schaltung wird durch zwei Faktoren bestimmt. Verstärker und Werte der ADC-Schnittstellenkomponenten (Bild 1) sowie die Einstellung des internen Front-End-Pufferbiasstroms im AD9467 über ein internes Register. Die tatsächlichen SFDR-Werte in Tabelle 1 ergeben sich nach der SFDR-Optimierung, beschrieben im Datenblatt des AD9467.

Ein weiterer Kompromiss, der in dieser Schaltung gemacht werden kann, ist der Vollausschlagsbereich des A/D-Wandlers. Die differentielle Vollausschlags-Eingangsspannung des A/D-Wandlers wurde auf 2 Vss eingestellt, was einen optimalen SFDR garantiert. Eine Änderung des Vollausschlags-Eingangsbereichs auf 2,5 Vss ergibt eine Verbesserung des SNR um etwa 1,5 dB, senkt aber den SFDR nur minimal. Der Eingangsbereich wird durch den in ein internes Register des AD9467 geladenen Wert eingestellt, der im Datenblatt angegeben ist.

Das Signal ist mit den 0,1-μF-Kondensatoren AC-gekoppelt, um die Gleichtaktspannungen zwischen Verstärker, Abschlusswiderständen und ADC-Eingängen zu blocken. Weitere Details zu Gleichtaktspannungen stehen im Datenblatt des AD9467.

Passive Bauteile und Überlegungen zur Leiterplattenlayout

Die Leistungsfähigkeit der vorgestellten Schaltung hängt stark vom Leiterplattenlayout ab. Dies beinhaltet z.B. Stromversorgungs-Bypassing, Verbindungen mit kontrollierter Impedanz (wo erforderlich), Bauteileplatzierung, Signal-Routing sowie Power- und Masseflächen.

Oberflächenmontierbare Kondensatoren mit geringen Parasitäten, Induktivitäten und Widerstände sollten als passive Bauteile im Filter verwendet werden. Die gewählten Spulen stammen aus der Serie 0603CS von Coilcraft. Die SMD-Kondensatoren im Filter haben eine Toleranz von 5%. Eine vollständige Dokumentation des Systems findet sich im Design Support Package.

Häufige Varianten der Schaltung

Für Anwendungen, die weniger Bandbreite benötigen und nur wenig Energie verbrauchen dürfen, kann der differentielle Verstärker ADL5561 verwendet werden. Er hat eine Bandbreite von 2,9 GHz und nimmt nur 40mA auf. Für eine noch geringere Bandbreite und weniger Energieverbrauch ist auch der ADA4950-1 einsetzbar. Dieses Bauteil hat eine Bandbreite von 1 GHz und nimmt 10 mA auf. Für höhere Bandbreiten eignet sich der zu den anderen Modellen anschlusskompatible differentielle Verstärker ADL5565 mit 6 GHz.

Schaltungsevaluierung und Test

Diese Schaltung nutzt das modifizierte Board AD9467-250EBZ und das FPGA-Datenerfassungsboard HSC-ADC-EVALCZ. Beide Boards lassen sich über High-Speed-Steckverbinder anschließen und ermöglichen ein schnelles Setup und die Evaluierung der Leistungsfähigkeit. Das AD9467-250EBZ enthält die hier beschriebene Schaltung. Das Datenerfassungsboard wird in Verbindung mit der Evaluierungssoftware Visual Analog und der SPI-Controller-Software verwendet, um den A/D-Wandler richtig zu steuern und Daten zu erfassen. Blockschaltbild, BOM und Layout für das Board AD9467-250EBZ sind im User Guide UG-200 beschrieben. Die Datei readme.txt im Design Support Package beschreibt die Modifikationen, die am Standard-Board vorgenommen wurden. Application Note AN-835 beschreibt, wie man die Hard- und Software einrichtet, um die hier beschriebenen Tests durchzuführen.

Der Autor: Rob Reeder, Analog Devices

Direkt mischender Sender mit großer Bandbreite

In diesem Tipp stellen wir eine Schaltung vor, in der der analoge Teil eines Senders mit direkter Umwandlung implementiert ist. Unterstützt werden HF-Frequenzen von 500 MHz bis 4,4 GHz.

Zum Einsatz kommt eine PLL mit einem breitbandigen, integrierten spannungsgesteuerten Oszillator. Die Filterung von Harmonischen des Oszillators von der PLL gewährleistet eine gute Quadratur-Genauigkeit und Seitenbandunterdrückung sowie einen niedrigen Fehlervektor (EVM – Error Vector Magnitude).

Bild 1: Vereinfachtes Blockschaltbild des direkt mischenden Senders (Bild: Analog Devices)
Bild 1: Vereinfachtes Blockschaltbild des direkt mischenden Senders (Bild: Analog Devices)

Rauscharme LDOs stellen sicher, dass das Power-Management keinen nachteiligen Einfluss auf das Phasenrauschen und den EVM hat.

Die Schaltung in Bild 1 enthält den integrierten Fractional-N PLL-Schaltkreis ADF4351 sowie den Breitband-Übertragungsmodulator ADL5375. Der ADF4351 liefert das LO-Signal (Local Oszillator) für den Transmit-Quadratur-Modulator ADL5375, der analoge I/Q-Signale in HF-Signale wandelt. Die beiden Bauteile bilden eine breitbandige Basisband Lösung, die IQ- in HF-Signale umsetzt.

Der ADF4351 wird für ein optimales LO-Phasenrauschen von dem sehr rauscharmen 3,3-V-Regler ADP150 versorgt. Zur Versorgung des ADL5375 kommt das 5-V-LDO-Modell ADP3334 zum Einsatz. Der ADP150 weist ein Ausgangsspannungsrauschen von 9 μVeff. auf und hilft, das VCO-Phasenrauschen zu optimieren und den Einfluss von VCO-Pushing (Äquivalent zur Unterdrückung von Störungen auf der Spannungsversorgung) zu reduzieren.

An den HF-Ausgängen des ADF4351 ist ein Filter erforderlich, um die Harmonischen zu dämpfen und Fehler im Quadratur-Erzeugungsblock des ADL5375 zu minimieren. Messungen und Simulationen haben ergeben, dass ungerade Harmonische mehr als gerade Harmonische zu Quadratur-Fehlern beitragen und, falls auf unter −30 dBc gedämpft, eine Seitenbandunterdrückung von −40 dBc oder besser entsteht.

Die Pegel der zweiten und dritten Harmonischen des ADF4351 entsprechen den Angaben im Datenblatt. Um die dritte Harmonische unter −30 dBc zu bringen ist eine Dämpfung von etwa 20 dB erforderlich.

Diese Schaltung bietet vier Filteroptionen, die vier Frequenzbänder abdecken. Die Filter wurden mit einem differenziellen Eingang von 100 Ω (HF-Ausgänge des ADF4351 mit geeignetem Matching) und einem differenziellen Ausgang von 50 Ω entwickelt (ADL5375 LOIN differenzielle Impedanz). Ein Chebyshev-Verlauf wurde für eine optimale Filterübergangscharakteristik verwendet. Jedoch mit dem Ergebnis eines erhöhten Ripples im Durchlassband.

Diese Filtertopologie erlaubt wahlweise den Einsatz eines komplett differenziellen Filters zur Minimierung der Anzahl der Bauteile, eines massebezogenen Filters für jeden Ausgang oder einer Kombination beider.

Die Ausgangsanpassung des ADF4351 besteht aus dem ZBIAS Pull-up und, in geringerem Umfang, den Entkopplungskondensatoren am Versorgungsknoten. Um eine breitbandige Anpassung zu erreichen, wird empfohlen, entweder eine ohmsche Last (ZBIAS = 50 Ω) oder eine ohmsche Last parallel zu einer reaktiven Last für ZBIAS zu verwenden. Letztere liefert je nach gewählter Induktivität eine geringfügig höhere Ausgangsleistung.

Der Parallelwiderstand kann als differenzielles Bauteil (100 Ω) an der Position C1c platziert werden, um den Platzbedarf auf der Leiterplatte zu minimieren.

Die Grenzfrequenz des Filters sollte etwa 1,2 bis 1,5 mal höher sein als die höchste Frequenz im interessierenden Band. Diese Grenzfrequenz gibt Designspielraum, weil sie wegen parasitärer Elemente normalerweise niedriger ist. Die Einflüsse von Parasitäten auf der Leiterplatte können für eine höhere Genauigkeit mit einem Elektromagnetik-Simulationstool simuliert werden.

Bei Frequenzen unter 1250 MHz ist ein Filter fünfter Ordnung erforderlich. Für 1,25 bis 2,8 GHz genügt ein Filter dritter Ordnung. Für Frequenzen oberhalb von 2,8 GHz ist keine Filterung nötig, da die Pegel der Harmonischen ausreichend niedrig sind, um die Seitenbänder zu unterdrücken.

Den ausführlichen Tipp finden Sie im Internet. Der Autor: Ian Collins,  Analog Devices.

 

Präzise Temperaturmessung mit Thermoelementen des Typs K

In diesem Schaltungstipp stellen wir eine kompakte, preisgünstige Lösung zur Aufbereitung von Thermoelementsignalen und deren Digitalisierung mit einem hochauflösenden A/D-Wandler vor.

 Bild 1: Thermoelementmesssystem (Typ K) mit integrierter Kaltstellenkompensation (vereinfachte Blockschaltung) (Bild: ADI) Bild 1: Thermoelementmesssystem (Typ K) mit integrierter Kaltstellenkompensation (vereinfachte Blockschaltung) (Bild: ADI)

Bei der Schaltung in Bild 1 handelt es sich um eine komplette Signalaufbereitung für ein Thermoelement mit Kaltstellenkompensation und nachgeschaltetem 16 Bit Sigma-Delta A/D-Wandler. Der Thermoelementverstärker AD8495 ist eine einfache und preiswerte Lösung zur Messung von Temperaturen mit Thermoelementen des Typs K (Paarung Nickel-Chrom/Nickel) einschließlich Kaltstellenkompensation.

Ein Instrumentenverstärker mit fester Verstärkung im AD8495 verstärkt das kleine Spannungssignal des Thermoelements und liefert 5 mV/°C am Ausgang. Die hohe Gleichtaktunterdrückung des Verstärkers sperrt Gleichtaktrauschen, das über die langen Anschlussleitungen des Thermoelements aufgenommen werden kann. Die hohe Impedanz der Eingänge erleichtert eine Erweiterung mit einem externen Filter für zusätzlichen Schutz.

Der differenzielle Verstärker AD8476 liefert den richtigen Signalpegel und die Gleichtaktspannung zum Treiben des 16 Bit, Sigma-Delta-A/D-Wandlers AD7790. Die Schaltung ist eine kompakte, preisgünstige Lösung zur Aufbereitung von Thermoelementsignalen und der Digitalisierung mit einem hochauflösenden A/D-Wandler.

Schaltungsbeschreibung

Ein Thermoelement ist ein einfaches, weit verbreitetes Bauteil zur Messung von Temperaturen. Es besteht aus zwei unterschiedlichen Metallen, die an einem Ende miteinander verbunden sind (Hot Junction). Das andere Ende des Thermoelements ist mit den Metallleitungen verbunden, die zur Messelektronik führen. Diese Verbindung bildet einen zweiten Übergangspunkt – genannt Cold Junction oder Kaltstelle. Um die Temperatur an der Messstelle (TMJ) zu erhalten, muss die differenzielle Spannung, die das Thermoelement erzeugt, bekannt sein. Außerdem muss die Fehlerspannung, die durch die Temperatur an der Referenzstelle (TRJ) erzeugt wird, spezifiziert sein.

Da mit Hilfe von Thermoelementen nur eine Temperaturdifferenz ermittelt werden kann, sind zur Messung der absoluten Temperatur weitere Maßnahmen notwendig. Hierzu muss die absolute Temperatur an den Drahtenden (Übergabepunkt) ermittelt und zum Differenz-Messergebnis addiert werden. Man spricht hierbei von einer Kaltstellenkompensation. Die Elektronik muss Änderungen der Temperatur am Referenzpunkt (Cold Junction) kompensieren, damit die Ausgangsspannung einer genauen Darstellung der Hot-Junction-Messung entspricht.

Die Schaltung nutzt den Thermoelementverstärker AD8495 an einer 5-V-Versorgung. Die Ausgangsspannung des AD8495 ist für 5 mV/°C kalibriert. An einer unipolaren 5-V-Versorgung ist der Ausgang linear zwischen etwa 75 mV und 4,75 V. Dies entspricht einem Temperaturbereich von 15 bis 950°C.

Der Ausgang des AD8495 treibt den nichtinvertierenden Eingang des differenziellen Verstärkers AD8476 der als Spannungsfolger geschaltet ist. Dieser wandelt das massebezogene Eingangssignal in differenzielle Ausgangssignale zum Treiben des A/D-Wandlers.

Ein differenzieller Tiefpass- und ein Gleichtaktfilter vor dem Eingang des AD8495 verhindern, dass HF-Signale, die, falls sie den AD8495 erreichen, gleichgerichtet werden können und als Temperaturschwankungen erscheinen. Die beiden 100-Ω-Widerstände und der 1-μF-Kondensator bilden einen differenziellen Filter mit einer Cutoff-Frequenz von 800 Hz.

Die beiden 0,01-μF-Kondensatoren bilden Gleichtaktfilter mit einer Cutoff-Frequenz von 160 kHz. Ein ähnlicher Filter befindet sich am Ausgang des differenziellen Verstärkers AD8476, bevor das Signal an den A/D-Wandler AD7790 gelangt.

Die Eingänge des AD8495 sind vor Abweichungen der Eingangsspannung bis 25 V von der Versorgungsspannung mit entgegengesetzter Polarität geschützt. Zum Beispiel verkraftet das Bauteil in dieser Schaltung mit einer positiven Versorgung von 5 V und der negativen Versorgung auf Masse (GND) eingangsseitig Spannungen von –20 bis 25 V. Spannungen an den Referenz- und Messpins sollten die Versorgung nicht mehr als 0,3 V übersteigen. Diese Eigenschaft ist speziell in Anwendungen mit kontrollierter Einschaltreihenfolge (Power Supply Sequencing) wichtig. Hier kann es passieren, dass die Signalquelle aktiv ist, bevor die Versorgungsspannungen am Verstärker anliegen.

Den ausführlichen Schaltungstipp finden Sie im Internet.

Der Autor: James Fitzgerald,  Analog Devices.

EMV-konforme RS-485-Schutzschaltungen

 

 

 

 Bild 1: EVAL-CN0313-SDPZ – Drei EMV-konforme Schutzschaltungen mit dem Transceiver ADM3485E (vereinfachte Blockschaltungen). (Bild: Analog Devices) Bild 1: EVAL-CN0313-SDPZ – Drei EMV-konforme Schutzschaltungen mit dem Transceiver ADM3485E (vereinfachte Blockschaltungen). (Bild: Analog Devices)

Das EVAL-CN0313-SDPZ ist eine getestete EMV-konforme Lösung, die RS-485-Schnittstellen in Verbindung mit dem Transceiver ADM3485E vor Störungen schützt.

Die Schaltung stellt sicher, dass das dynamische Zusammenspiel zwischen dem Transceiver und den Komponenten der Schutzschaltungen störungsfrei funktioniert und Schutz vor elektrostatischer Entladung, Transienten und Überspannungen gemäß den Normen IEC 61000-4-2, IEC 61000-4-4 und IEC 61000-4-5 gewährleistet ist.Denn damit sicher gestellt ist, dass RS-485-Schnittstellen auch in Umgebungen mit elektromagnetischen Störungen wie geplant arbeiten, sind die relevanten EMV-Vorschriften zu erfüllen. Innerhalb dieser EMV-Vorschriften gibt es für Datenkommunikationsleitungen Hochvolt-Transienten der drei folgenden Typen:  

–        IEC 61000-4-2: Störfestigkeit gegen elektrostatische Entladungen (ESD),

–         IEC 61000-4-4: Festigkeit gegenüber schnellen Transienten (EFT) und

–        IEC 61000-4-5: Störfestigkeit gegen Überspannungen (Surge Immunity).

Bild 1 zeigt drei verschiedene Möglichkeiten, die Daten-Schnittstellen zu schützen. Zu sehen ist das Blockschaltbild des EVAL-CN0313-SDPZ. Beim ADM3485E handelt es sich um einen für 3,3 V ausgelegten Daten-Transceiver mit geringer Stromaufnahme, der für Half-Duplex-Kommunikation auf Multipoint-Übertragungsleitungen geeignet ist. Der Tranceiver bietet eine Datenrate bis zu 12 MBit/s mit einem Gleichtaktbereich an den Bus-Anschlüssen (A und B) von −7 bis 12 V.

In der ersten Schutzschaltung (in Bild 1 mit TVS bezeichnet) wird das Bauteil CDSOT23-SM712 von Bourns verwendet. Dabei handelt es sich um ein TVS-Array (Transient Voltage Suppressor), das für den Schutz von RS-485-Schnittstellen optimiert ist. Dieses Konzept bietet ESD-Schutz bis zu 8 kV (Kontakt) bzw. 15 kV (Luftstrecke), Schutz vor schnellen Transienten (EFT) bis 2 kV sowie vor Überspannungen bis 1 kV.

Im zweiten Konzept (in Bild 1 als TVS/TBU/TISP dargestellt) bieten das TVS den sekundären, der TISP4240M3BJR-S von Bourns den primären Schutz. Beim TISP4240M3BJR-S handelt es sich um einen komplett integrierten Überspannungsschutz (TISP). Der TISP ist ein Thyristor. Die Transient Blocking Unit TBU-CA065-200-WH von Bourns ist eine nichtlineare Überstrom-Schutzkomponente zwischen den primären und sekundären Schutzbauteilen, die für die Koordination sorgt.

Dieses Schutzkonzept schützt bis zu 8 kV (Kontakt) bzw. 15 kV (Luftstrecke) gegenüber ESD, bis 2 kV vor EFT und bis 4 kV vor Überspannungen. Das dritte Schutzkonzept (in Bild 1 als TVS/TBU/ GDT bezeichnet) arbeitet ähnlich wie das Schutzkonzept 2. Eine Gasentladungsröhre (GDT) bietet zum Schutz vor Überspannungstransienten einen Massepfad nach Masse mit niedriger Impedanz. Gewählt wurde das Modell Bourns 2038-15-SM-RPLF.

Schutz bis 8 kV am Kontakt und 15 V Luftstrecke

Dieses dritte Schutzkonzept schützt bis zu 8 kV (Kontakt) bzw. 15 kV (Luftstrecke) gegenüber ESD, bis 2 kV vor EFT und bis 6 kV vor Überspannungen. Die hier beschriebenen Schutzschaltungen demonstrieren drei verschiedene EMV-konforme Lösungen für RS-485-Schnittstellen. Sie geben Entwicklern Optionen für den jeweils erforderlichen Schutz an die Hand. Alle hier beschriebenen Schutzschaltungen wurden von einem unabhängigen externen EMV-Testlabor verifiziert. Das EVAL-CN0313-SDPZ ist das industrieweit erste EMV-konforme RS-485-Entwicklungswerkzeug, das Schutz vor elektrostatischer Entladung, schnellen Transienten und Überspannungen bis Level 4 bietet.

Den ausführlichen Tipp mit weiteren Bildern finden Sie hier Der Autor: James Scanlon ist Senior Evaluation Engineer bei Analog Devices in Limerick/Irland.

2-Kanal-Colorimeter mit Transimpedanz-PGAs und synchronen Detektoren

 

 

 

 Bild 1: Zweikanaliges Colorimeter mit Transimpedanzverstärker und synchronen Detektoren (vereinfachtes Schaltbild) Bild 1: Zweikanaliges Colorimeter mit Transimpedanzverstärker und synchronen Detektoren (vereinfachtes Schaltbild)

In diesem Tipp beschreiben wir ein zweikanaliges Colorimeter mit einem Transmitter für eine modulierte Lichtquelle und einem synchronen Detektor als Empfänger. Indem man die modulierte Quelle und den synchronen Detektor nutzt, werden Messfehler aufgrund von Umgebungslicht und niederfrequentem Rauschen eliminiert.

Bei der Schaltung in Bild 1 handelt es sich um ein zweikanaliges Colorimeter mit einem Transmitter für eine modulierte Lichtquelle und einem synchronen Detektor als Empfänger. Die Fotodiodeneingangsstufe enthält einen Transimpedanzverstärker, einen synchronen Detektor und einen 16-Bit-Sigma/Delta-ADC. Indem man die modulierte Quelle und den synchronen Detektor nutzt, werden Messfehler aufgrund von Umgebungslicht und niederfrequentem Rauschen eliminiert.

Die Schaltung misst das Verhältnis von Licht, das von den Mess- und Referenzbehältern bei drei verschiedenen Wellenlängen absorbiert wird. Dies ist die Basis für viele chemische Analysen sowie für Messgeräte, mit denen Konzentrationen gemessen und mit Hilfe der Absorptionsspektroskopie Materialien charakterisiert werden.

Ein Takt von 5 kHz moduliert eine der LEDs mit einem Konstantstromtreiber, aufgebaut um den Vierfach-Operationsverstärker AD8618 und den Schalter ADG633. Der Beam Splitter schickt die Hälfte des Lichts durch den Messbehälter und die andere Hälfte durch den Referenzbehälter. Der Transimpedanzverstärker wandelt den Strom der Fotodiode in eine rechteckförmige Ausgangsspannung, deren Amplitude proportional zu dem durch die Mess- oder Referenzbehälter übertragenen Licht ist. Der AD8615 eignet sich aufgrund seines niedrigen Biasstromes (1 pA), seiner Eingangsoffsetspannung (100 μV) und seines Rauschens (8 nV/√Hz) gut als Fotodiodenverstärker.

Dieser Verstärker nutzt die SPDT-Schalter des Typs ADG633, um eine von zwei Transimpedanzverstärkungen zu wählen. Indem man die Schalter in der Konfiguration von Bild 1 nutzt, eliminiert man Verstärkungs- und Verzerrungsfehler aufgrund ihres Durchlasswiderstands. Da sich einer der Schalter außerhalb der Rückkopplungsschleife befindet, entspricht die Ausgangsimpedanz dieser Stufe dem Durchlasswiderstand des ADG633 (typisch 52 Ω).

Der ADR4525 stellt eine Referenzspannung für den A/D-Wandler zur Verfügung und spannt die Fotodiode und Verstärker auf 2,5 V vor. Ein 5-V-Linearregler versorgt die analogen und digitalen Bereiche des Boards. Die zweite Stufe nutzt ebenfalls den Operationsverstärker AD8615 zur AC-Kopplung und zum Puffern der resultierenden Ausgangsrechteckspannung. Die dem AC-Koppelfilter nachgeschaltete Schaltung ist ein synchroner Gleichrichter, aufgebaut mit dem differenziellen Verstärker AD8271 und dem SPDT-Schalter ADG733.

Wenn sich der Takt, der die LEDs treibt, im Zustand „High“ befindet, konfigurieren die Schalter im ADG733 den AD8271 als Eins-Verstärker. Wenn sich der Takt im „Low“-Zustand befindet, konfigurieren die Schalter den AD8271 für eine Übertragungsfunktion von U0= 2 Uref– Uin. In dieser Konfiguration hat der synchrone Gleichrichter eine Verstärkung von –1, vorgespannt um die 2,5-V-Referenz. Am Ausgang des synchronen Gleichrichters liegt eine DC-Spannung an. Diese variiert von 2,5 V (kein Licht) bis 3,75 V.

Die Schaltung unterdrückt Signale mit Frequenzen, die nicht synchron zum LED-Takt sind (oder seiner ungeraden Harmonischen). Der Tiefpassfilter am Ausgang des AD8271 arbeitet wie ein Bandpassfilter um die LED-Taktfrequenz. Die Grenzfrequenz dieses Filters ist auf 16 Hz eingestellt. Die Bandbreite des Filters liegt etwa beim LED-Takt; falls der LED-Takt 5 kHz beträgt, liegt der 3-dB-Durchlassbereich des synchronen Detektors zwischen 4,984 und 5,016 kHz.

Die letzte Stufe ist der A/D-Wandler AD7798. Indem man die 2,5-V-Referenzspannung an den AIN−Anschluss anschließt und die Verstärkung des PGA auf ×2 einstellt, lässt sich der Ausgang 2,5 bis 3,75 V des Gleichrichters auf Full Scale mit 16 Bit abbilden.

Den ausführlichen Tipp mit Testegebnissen finden Sie im Internet unter http://www.elektronikpraxis.vogel.de/design-tipps/analogtechnik/articles/419172/

Der Autor: Luis Orozco ist Applikationsingenieur bei Analog Devices im Bereich Industrial and Instrumentation in Wilmington/ USA.

Stromschleifen gespeistes Feldgerät mit HART-Schnittstelle

Die hier vorgestellte Schaltung ist eine Beispielanwendung für integrierte Sensorik mit 4/20-mA-Analogausgang und HART-Schnittstelle.

Bei der Schaltung in Bild 1 handelt es sich um ein industrietaugliches Stromschleifen gespeistes Feldgerät mit 4/20-mA-Analogausgang und einer HART-Schnittstelle (Highway Addressable Remote Transducer). Die HART-Technologie ist eine digitale Zweiwege-Kommunikation, bei der ein FSK-Signal (Frequency-Shift-Keyed) mit 1 mAss auf das Standard-Analogsignal (4/20 mA) moduliert wird. Dies erlaubt Funktionen wie ferngesteuerte Kalibrierung, Fehlerabfrage und die Übertragung von Prozessvariablen, die in Anwendungen wie Temperatur- und Drucksteuerungen erforderlich sind.

Die Schaltung hat einen Compliance-Test durchlaufen, wurde getestet, verifiziert und bei der HART Communication Foundation (HCF) registriert.

Die Schaltung besteht aus dem ADuCM360, einem analogen Präzisions-Mikrocontroller mit geringem Energieverbrauch, dem AD5421, einem 16-Bit-D/A-Wandler, der aus der 4/20mA-Schleife versorgt wird, und dem AD5700, einem HART-konformen Modem-IC.

Analoge Front-End-Schnittstelle

Die analoge Eingangsstufe ADuCM360 enthält einen Zweifach Sigma/Delta-A/D-Wandler mit 24 Bit. Ebenfalls enthalten sind Instrumentenverstärker mit programmierbarer Verstärkung, eine Präzisions-Band-Gap-Referenz, programmierbare Stromquellen, ein flexibler Multiplexer und viele weitere Funktionen. Der direkte Anschluss an Analogsensoren wie Drucksensorbrücken, Widerstandthermometer, Thermoelemente und andere Sensortypen ist möglich.

Die Schaltung in Bild 1 zeigt eine Beispielverbindung für einen primären Brückensensor und ein sekundäres Widerstansthermometer. Die flexible Eingangsstufe des ADuCM360 ermöglicht jedoch viele andere Konfigurationen zur Entwicklung beliebiger und präziser Sensoranwendungen.

Primärer Sensoreingang

Der auf dem Chip des ADuCM360 befindliche ADC0 misst den primären Sensor des Feldgerätes, in Bild 1 als Brückenwandler dargestellt. Der Sensor ist für eine höhere elektromagnetische Störfestigkeit über ein RC-Filternetzwerk an die analogen Eingangspins AIN0 und AIN1 angeschlossen. Die Gleichtakt-Filterbandbreite beträgt etwa 16 kHz, die differenzielle Bandbreite 800 Hz.

Die Referenzspannungseingänge UREF+ und UREF− am ADuCM360 erfassen die Brückenanregungsspannung und eine ratiometrische Messung durch. Damit wird die Messung unabhängig vom exakten Wert der Sensor-Versorgungsspannung. Der integrierte Masseschalter trennt die Brückenanregung dynamisch und spart so Energie, falls die Anwendung dies verlangt.

Sekundärer Sensoreingang

Die Schaltung nutzt einen Pt-100-Widerstandsthermometer als sekundären Sensor. Das Widerstandsthermometer (RTD) misst die Temperatur des primären Sensors und ermöglicht somit eine Temperaturkompensation des primären Sensors, falls erforderlich.

Die programmierbare Stromquelle ADuCM360 versorgt das Widrestandsthermometer über den Anschluss AIN4. Der ADC1 auf dem ADuCM360 misst die Spannung über dem RTD mit Hilfe der als differenziellen Eingang konfigurierten Anschlüsse AIN3 und AIN2. Die genaue Höhe des Stromes, der durch das Widerstandsthermometer fließt, wird über einen Präzisionswiderstand (RREF) ermittelt und mit dem ADC1 über den Anschluss AIN7 gemessen. Der ADC1 nutzt die integrierte Band-Gap-Spannungsreferenz.

Digitale Datenverarbeitung, Algorithmus und Kommunikation

Der ADuCM360 enthält einen 32 Bit ARM Cortex M3 RISC-Prozessor mit integriertem 128 kByte nichtflüchtigem Flash/EE Memory, 8 kByte SRAM und einem 11-kanaligen DMA-Controller, der Kommunikationsperipherie (2× SPI, UART, I²C) unterstützt.

Die Demonstrationssoftware führt die Initialisierung und Konfiguration aus, verarbeitet Daten von den Analogeingängen, steuert den Analogausgang und übernimmt die HART-Kommunikation.

Analogausgang

Im AD5421 befindet sich ein 16-Bit-Präzisions-D/A-Wandler mit 4/20mA schleifenversorgtem Ausgangstreiber. Das Bauteil stellt alle Funktionen bereit, die für den Analogausgang des Feldgerätes erforderlich sind.

Der AD5421 wird über die SPI-Schnittstelle mit dem Controller ADuCM360 verbunden.

Ebenfalls im AD5421 enthalten sind eine Reihe von Diagnosefunktionen für die 4/20-mA-Schleife. Der Hilfs-ADC misst mit einem Widerstandsteiler 20 MΩ/1 MΩ am Anschluss VLOOP die Spannung über den Schleifenanschlüssen des Gerätes. Der A/D-Wandler detektiert über den integrierten Sensor auch die Chiptemperatur. Der Controller ADuCM360 konfiguriert und liest die gesamte Diagnose des AD5421 aus. Alternativ kann der AD5421 auch unabhängig arbeiten.

Ein Beispiel: Falls die Kommunikation zwischen dem Controller und dem AD5421 versagt, setzt der AD5421 nach einer bestimmten Zeit seinen Analogausgang automatisch auf einen Alarmstrom von 3,2 mA. Dieser Alarmstrom signalisiert dem Host, dass das Feldgerät nicht funktioniert.

Die Software steuert jede Änderung des Ausgangsstromes von einem Wert zum anderen, um Störungen der HART-Kommunikation zu vermeiden.

HART-Kommunikation

Der AD5700 enthält ein komplettes HART-FSK-Modem. Das Modem ist über eine Standard-UART-Schnittstelle an den Controller ADuCM360 angeschlossen, komplementiert durch RTS (Request to Send) und das CD-Signal (Carrier Detect).

Die Amplitude der Spannung am HART-Ausgang ist durch den kapazitiven Teiler (0,068 μF/0,22 μF) auf den erforderlichen Wert eingestellt und an den Pin CIN des AD5421 gelegt. Dort wird die Spannung mit dem DAC-Ausgang kombiniert, um den Ausgangsstrom zu treiben und zu modulieren.

Der HART-Eingang wird von LOOP+ über einen einfachen passiven RC-Filter in den ADC-IP-Pin des AD5700 eingekoppelt. Der RC-Filter arbeitet als erste Stufe als Bandpassfilter für den HART-Demodulator und verbessert die elektromagnetische Störfestigkeit des Systems. Dies ist wichtig für robuste Anwendungen, die in rauen Industrieumgebungen arbeiten müssen.

Der Oszillator AD5700 mit geringem Energieverbrauch erzeugt das Taktsignal für das HART-Modem. Verwendet wird ein externer 3,8664-MHz-Quarz, der direkt an die Pins XTAL1 und XTAL2 angeschlossen ist.

Ausgangsschutz

Ein Überspannungsbegrenzer schützt die 4/20-mA-HART-Schnittstelle vor Überspannung. Er ist so dimensioniert, dass die maximal zulässige Spannung von 60 V am Pin REGIN des AD5421 nicht überschritten wird. Der Leckstrom des Überspannungsbegrenzers kann die Genauigkeit des Ausgangsstromes beeinträchtigen; deshalb sollte man den Leckstrom bei der Auswahl des Überspannungsbegrenzers im Auge behalten.

Ein externer FET (Verarmungstyp) kann in Verbindung mit dem AD5421 verwendet werden, um die maximale Schleifenspannung zu erhöhen.Die Schaltung wird mit einem Diodenpaar in Serie mit dem Schleifenausgang gegen Verpolung geschützt.

Die Ferritperlen in Reihe mit der Schleife verbessern zusammen mit dem 4700-pF-Kondensator den Störschutz des Systems. Ein Kondensator mit höherer Kapazität sollte aufgrund der HART-Netzwerkspezifikation über den Schleifenanschlüssen nicht verwendet werden.

Die Zener-Diode (4,7 V) mit geringem Leckstrom schützt den auf dem Chip des AD5421 befindlichen 50-Ω-Schleifenwiderstand im Fall einer extern anliegenden Spannung zwischen dem COM-Pin des AD5421 und dem LOOP−Pin (zum Beispiel bei der Programmierung des ADuCM360 oder beim Debuggen der Schaltung).

Stromversorgungen und Power-Management

Die komplette Schaltung einschließlich des Sensortreibers muss mit der begrenzten Energie aus der 4/20-mA-Schleife arbeiten. Dies ist bei allen Stromschleifen gespeisten Feldgeräten eine übliche Herausforderung. Die Schaltung in Bild 1 zeigt eine Lösung, die mit wenig Energie auskommt und dennoch sehr leistungsfähig ist. Alle drei in der Anwendung verwendeten integrierten Schaltungen sind auf einen niedrigen Energieverbrauch optimiert. Die Schaltung nutzt ihre integrierten Funktionen, um eine flexible Power-Management-Struktur und eine optimale schleifengespeiste Lösung zu realisieren.

Der AD5421 wird von der Schleifenspannung der 4/20-mA-Schleife versorgt und stellt der restlichen Schaltung eine geregelte Spannung zur Verfügung. Die Spannung REGOUT des AD5421 ist über den Anschluss-Pin programmierbar. Je nach Anforderung der Schaltung kann sie 1,8 bis 12 V betragen. Die Schaltung in Bild 1 nutzt die 3,3-V-Versorgungsspannungsoption. Die Bauteile ADuCM360 und AD5700 haben jedoch einen größeren Versorgungsspannungsbereich; daher kann eine andere, für die Anwendung passende Versorgungsspannung genutzt werden.

Der REGOUT-RC-Filter (10 μF/10 Ω/10 μF) unterdrückt Interferenzen, die aus der Schleife kommen und das analoge Front-End beeinträchtigen. Der Filter verhindert auch, dass von der Schaltung, speziell vom Controller und dem digitalen Bereich erzeugte Störungen in die Schleife gelangen. Dies ist für eine zuverlässige HART-Kommunikation wichtig.

Das HART-Modem AD5700 wird über einen zusätzlichen RC-Filter (470 Ω/1 μF) versorgt. Dieser Filter ist in einer schleifengespeisten Anwendung sehr wichtig, da er verhindert, dass Stromrauschen vom AD5700 in den 4/20-mA-Schleifenausgang eingekoppelt wird und so die HART-Kommunikation beeinträchtigt. Das Rauschen der 4/20-mA-Schleife wird speziell durch das HART-In-Band Rauschen während des Rauschtests gemessen. Das Modem nutzt den externen Quarz mit 8,2-pF-Kondensatoren nach Masse an den Pins XTAL1 und XTAL2. Diese Option benötigt die wenigste Energie.

Der ADuCM360 verfügt über ein sehr flexibles internes Power-Management mit vielen Optionen zur Versorgung und Taktung aller internen Blöcke und ermöglicht eine ausgewogene Balance zwischen der benötigten Funktion, der Leistungsfähigkeit und dem Energiebedarf für die spezielle Instrumentierung.

Die AVDD des analogen Front-Ends wird von einem anderen Filter (10 μF/Ferritperle/1,6 Ω/10 μF) bereitgestellt, um das Stromversorgungsrauschen zu minimieren und die Leistungsfähigkeit für Sensorsignale mit niedrigen Pegeln zu erhöhen.

Der Masseschalter-Pin GND_SW des ADuCM360 steuert die Anregung/Stromversorgung für den primären Sensor. Beim Einschalten des Geräts steht der Schalter auf der Stellung „Aus”. Diese Voreinstellung erlaubt die komplette Konfiguration des Systems einschließlich geeigneter Power-Betriebsarten vor dem Einschalten des Sensors. So lassen sich mögliche Einschaltstromspitzen am 4/20-mA-Schleifenausgang minimieren.

Auf ähnliche Weise wird der sekundäre Sensor von der programmierbaren Stromquelle des ADuCM360 versorgt. Daher wird seine Versorgung komplett über die Software gesteuert.

Den ausführlichen Beitrag mit Testergebnissen und weiteren Bildern finden Sie im Internet unter http://www.elektronikpraxis.vogel.de/sensorik/articles/425841/ Der Autor: Michal Brychta ist Applikationsingenieur bei Analog Devices in Irland.